skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging Trends in Information‐Driven Engineering of Complex Biological Systems
Abstract Synthetic biological systems are used for a myriad of applications, including tissue engineered constructs for in vivo use and microengineered devices for in vitro testing. Recent advances in engineering complex biological systems have been fueled by opportunities arising from the combination of bioinspired materials with biological and computational tools. Driven by the availability of large datasets in the “omics” era of biology, the design of the next generation of tissue equivalents will have to integrate information from single‐cell behavior to whole organ architecture. Herein, recent trends in combining multiscale processes to enable the design of the next generation of biomaterials are discussed. Any successful microprocessing pipeline must be able to integrate hierarchical sets of information to capture key aspects of functional tissue equivalents. Micro‐ and biofabrication techniques that facilitate hierarchical control as well as emerging polymer candidates used in these technologies are also reviewed.  more » « less
Award ID(s):
1647837
PAR ID:
10091108
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
26
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Direct laser writing via two‐photon polymerization (2PP) is an emerging micro‐ and nanofabrication technique to prepare predetermined and architecturally precise hydrogel scaffolds with high resolution and spatial complexity. As such, these scaffolds are increasingly being evaluated for cell and tissue engineering applications. This article first discusses the basic principles and photoresists employed in 2PP fabrication of hydrogels, followed by an in‐depth introduction of various mechanical and biological characterization techniques used to assess the fabricated structures. The design requirements for cell and tissue related applications are then described to guide the engineering, physicochemical, and biological efforts. Three case studies in bone, cancer, and cardiac tissues are presented that illustrate the need for structured materials in the next generation of clinical applications. This paper concludes by summarizing the progress to date, identifying additional opportunities for 2PP hydrogel scaffolds, and discussing future directions for 2PP research. 
    more » « less
  2. Abstract Advancing biologically driven soft robotics and actuators will involve employing different scaffold geometries and cellular constructs to enable a controllable emergence for increased production of force. By using hydrogel scaffolds and muscle tissue, soft biological robotic actuators that are capable of motility have been successfully engineered with varying morphologies. Having the flexibility of altering geometry while ensuring tissue viability can enable advancing functional output from these machines through the implementation of new construction concepts and fabrication approaches. This study reports a forward engineering approach to computationally design the next generation of biological machines via direct numerical simulations. This was subsequently followed by fabrication and characterization of high force producing biological machines. These biological machines show millinewton forces capable of driving locomotion at speeds above 0.5 mm s−1. It is important to note that these results are predicted by computational simulations, ultimately showing excellent agreement of the predictive models and experimental results, further providing the ability to forward design future generations of these biological machines. This study aims to develop the building blocks and modular technologies capable of scaling force and complexity of these devices for applications toward solving real world problems in medicine, environment, and manufacturing. 
    more » « less
  3. Abstract Mechanotherapy has emerged as a promising treatment for tissue injury. However, existing robots for mechanotherapy are often designed on intuition, lack remote and wireless control, and have limited motion modes. Herein, through topology optimization and hybrid fabrication, wireless magneto‐active soft robots are created that can achieve various modes of programmatic deformations under remote magnetic actuation and apply mechanical forces to tissues in a precise and predictable manner. These soft robots can quickly and wirelessly deform under magnetic actuation and are able to deliver compressing, stretching, shearing, and multimodal forces to the surrounding tissues. The design framework considers the hierarchical tissue‐robot interaction and, therefore, can design customized soft robots for different types of tissues with varied mechanical properties. It is shown that these customized robots with different programmable motions can induce precise deformations of porcine muscle, liver, and heart tissues with excellent durability. The soft robots, the underlying design principles, and the fabrication approach provide a new avenue for developing next‐generation mechanotherapy. 
    more » « less
  4. Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation. 
    more » « less
  5. Buchan, Alison (Ed.)
    ABSTRACT Climate change jeopardizes human health, global biodiversity, and sustainability of the biosphere. To make reliable predictions about climate change, scientists use Earth system models (ESMs) that integrate physical, chemical, and biological processes occurring on land, the oceans, and the atmosphere. Although critical for catalyzing coupled biogeochemical processes, microorganisms have traditionally been left out of ESMs. Here, we generate a “top 10” list of priorities, opportunities, and challenges for the explicit integration of microorganisms into ESMs. We discuss the need for coarse-graining microbial information into functionally relevant categories, as well as the capacity for microorganisms to rapidly evolve in response to climate-change drivers. Microbiologists are uniquely positioned to collect novel and valuable information necessary for next-generation ESMs, but this requires data harmonization and transdisciplinary collaboration to effectively guide adaptation strategies and mitigation policy. 
    more » « less