Bilinear pooling has been recently proposed as a feature encoding layer, which can be used after the convolutional layers of a deep network, to improve performance in multiple vision tasks. Different from conventional global average pooling or fully connected layer, bilinear pooling gathers 2nd order information in a translation invariant fashion. However, a serious drawback of this family of pooling layers is their dimensionality explosion. Approximate pooling methods with compact properties have been explored towards resolving this weakness. Additionally, recent results have shown that significant performance gains can be achieved by adding 1st order information and applying matrix normalization to regularize unstable higher order information. However, combining compact pooling with matrix normalization and other order information has not been explored until now. In this paper, we unify bilinear pooling and the global Gaussian embedding layers through the empirical moment matrix. In addition, we propose a novel sub-matrix square-root layer, which can be used to normalize the output of the convolution layer directly and mitigate the dimensionality problem with off-the-shelf compact pooling methods. Our experiments on three widely used finegrained classification datasets illustrate that our proposed architecture, MoNet, can achieve similar or better performance than with the state-of-art G2DeNet. Furthermore, when combined with compact pooling technique, MoNet obtains comparable performance with encoded features with 96% less dimensions.
more »
« less
An Order Preserving Bilinear Model for Person Detection in Multi-Modal Data
We propose a new order preserving bilinear framework that exploits low-resolution video for person detection in a multi-modal setting using deep neural networks. In this setting cameras are strategically placed such that less robust sensors, e.g. geophones that monitor seismic activity, are located within the field of views (FOVs) of cameras. The primary challenge is being able to leverage sufficient information from videos where there are less than 40 pixels on targets, while also taking advantage of less discriminative information from other modalities, e.g. seismic. Unlike state-of-the-art methods, our bilinear framework retains spatio-temporal order when computing the vector outer products between pairs of features. Despite the high dimensionality of these outer products, we demonstrate that our order preserving bilinear framework yields better performance than recent orderless bilinear models and alternative fusion methods. Code is available at https://github.com/oulutan/OP-Bilinear-Model.
more »
« less
- Award ID(s):
- 1650474
- PAR ID:
- 10091237
- Date Published:
- Journal Name:
- IEEE Winter Conference on Applications of Computer Vision (WACV)
- Page Range / eLocation ID:
- 1160 to 1169
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bilinear pooling has been recently proposed as a feature encoding layer, which can be used after the convolutional layers of a deep network, to improve performance in mul- tiple vision tasks. Different from conventional global aver- age pooling or fully connected layer, bilinear pooling gath- ers 2nd order information in a translation invariant fash- ion. However, a serious drawback of this family of pooling layers is their dimensionality explosion. Approximate pool- ing methods with compact properties have been explored towards resolving this weakness. Additionally, recent re- sults have shown that significant performance gains can be achieved by adding 1st order information and applying ma- trix normalization to regularize unstable higher order in- formation. However, combining compact pooling with ma- trix normalization and other order information has not been explored until now. In this paper, we unify bilinear pool- ing and the global Gaussian embedding layers through the empirical moment matrix. In addition, we propose a novel sub-matrix square-root layer, which can be used to normal- ize the output of the convolution layer directly and mitigate the dimensionality problem with off-the-shelf compact pool- ing methods. Our experiments on three widely used fine- grained classification datasets illustrate that our proposed architecture, MoNet, can achieve similar or better perfor- mance than with the state-of-art G 2 DeNet. Furthermore, when combined with compact pooling technique, MoNet ob- tains comparable performance with encoded features with 96% less dimensions.more » « less
-
null (Ed.)Abstract In this paper, we extendthe structure-preserving interpolatory model reduction framework, originally developed for linear systems, to structured bilinear control systems. Specifically, we give explicit construction formulae for the model reduction bases to satisfy different types of interpolation conditions. First, we establish the analysis for transfer function interpolation for single-input single-output structured bilinear systems. Then, we extend these results to the case of multi-input multi-output structured bilinear systems by matrix interpolation. The effectiveness of our structure-preserving approach is illustrated by means of various numerical examples.more » « less
-
The density and complexity of urban environments present significant challenges for autonomous vehicles. Moreover, ensuring pedestrians’ safety and protecting personal privacy are crucial considerations in these environments. Smart city intersections and AI-powered traffic management systems will be essential for addressing these challenges. Therefore, our research focuses on creating an experimental framework for the design of applications that support the secure and efficient management of traffic intersections in urban areas. We integrated two cameras (street-level and bird’s eye view), both viewing an intersection, and a programmable edge computing node, deployed within the COSMOS testbed in New York City, with a central management platform provided by Kentyou. We designed a pipeline to collect and analyze the video streams from both cameras and obtain real-time traffic/pedestrian-related information to support smart city applications. The obtained information from both cameras is merged, and the results are sent to a dedicated dashboard for real-time visualization and further assessment (e.g., accident prevention). The process does not require sending the raw videos in order to avoid violating pedestrians’ privacy. In this demo, we present the designed video analytic pipelines and their integration with Kentyou central management platform.more » « less
-
The density and complexity of urban environments present significant challenges for autonomous vehicles. Moreover, ensuring pedestrians’ safety and protecting personal privacy are crucial considerations in these environments. Smart city intersections and AI-powered traffic management systems will be essential for addressing these challenges. Therefore, our research focuses on creating an experimental framework for the design of applications that support the secure and efficient management of traffic intersections in urban areas. We integrated two cameras (street-level and bird’s eye view), both viewing an intersection, and a programmable edge computing node, deployed within the COSMOS testbed in New York City, with a central management platform provided by Kentyou. We designed a pipeline to collect and analyze the video streams from both cameras and obtain real-time traffic/pedestrian-related information to support smart city applications. The obtained information from both cameras is merged, and the results are sent to a dedicated dashboard for real-time visualization and further assessment (e.g., accident prevention). The process does not require sending the raw videos in order to avoid violating pedestrians’ privacy. In this demo, we present the designed video analytic pipelines and their integration with Kentyou central management platform. Index Terms—object detection and tracking, camera networks, smart intersection, real-time visualizationmore » « less
An official website of the United States government

