skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: High‐Affinity Antibody Detection with a Bivalent Circularized Peptide Containing Antibody‐Binding Domains

Direct chemical labeling of antibody produces molecules with poorly defined modifications. Use of a small antibody‐binding protein as an adapter can simplify antibody functionalization by forming a specific antibody‐bound complex and introducing site‐specific modifications. To stabilize a noncovalent antibody complex that may be used without chemical crosslinking, a bivalent antibody‐binding protein is engineered with an improved affinity of interaction by joining two Z domains with a conformationally flexible linker. The linker is essential for the increase in affinity because it allows simultaneous binding of both domains. The molecule is further circularized using a split intein, creating a novel adapter protein (“lasso”), which binds human immunoglobulin G1 (IgG1) withKD = 0.53 nmand a dissociation rate that is 55‐ to 84‐fold slower than Z. The lasso contains a unique cysteine for conjugation with a reporter and may be engineered to introduce other functional groups, including a biotin tag and protease recognition sequences. When used in enzyme‐linked immunosorbent assay (ELISA), the lasso generates a stronger reporter signal compared to a secondary antibody and lowers the limit of detection by 12‐fold. The small size of the lasso and a long half‐life of dissociation make the peptide a useful tool in antibody detection and immobilization.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology Journal
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Antibodies are essential biochemical reagents for detecting protein post-translational modifications (PTMs) in complex samples. However, recent efforts in developing PTM-targeting antibodies have reported frequent non-specific binding and limited affinity of such antibodies. To address these challenges, we investigated whether directed evolution could be applied to improve the affinity of a high-specificity antibody targeting phospho-threonine 231 (pT231) of the human microtubule-associated protein tau. On the basis of existing structural information, we hypothesized that improving antibody affinity may come at the cost of loss in specificity. To test this hypothesis, we developed a novel approach using yeast surface display to quantify the specificity of PTM-targeting antibodies. When we affinity-matured the single-chain variable antibody fragment through directed evolution, we found that its affinity can be improved > 20-fold over that of the wild-type antibody, reaching a picomolar range. We also discovered that most of the high-affinity variants exhibit cross-reactivity towards the non-phosphorylated target site, but not to the phosphorylation site with a scrambled sequence. However, systematic quantification of the specificity revealed that such a tradeoff between the affinity and specificity did not apply to all variants and led to the identification of a picomolar-affinity variant that has a matching high specificity of the original phospho-tau antibody. In cell- and tissue-imaging experiments, the high-affinity variant gave significantly improved signal intensity while having no detectable nonspecific binding. These results demonstrate that directed evolution is a viable approach for obtaining high-affinity PTM-specific antibodies, and highlight the importance of assessing the specificity in the antibody engineering process. 
    more » « less
  2. Biosensors based on graphene field effect transistors (GFETs) decorated with antibody‐functionalized platinum nanoparticles (PtNPs) are developed for the quantitative detection of breast cancer biomarker HER3. High‐quality chemical vapor deposited graphene is prepared and transferred over gold electrodes microfabricated on an SiO2/Si wafer to yield an array of 52 GFET devices. The GFETs are modified with PtNPs to obtain a hybrid nanostructure suitable for attachment of HER3‐specific, genetically engineered thiol‐containing single‐chain variable fragment antibodies (scFv) to realize a biosensor for HER3. Physical and electrical characterization of Bio‐GFET devices is carried out by electron microscopy, atomic force microscopy, Raman spectroscopy, and current–gate voltage measurements. A concentration‐dependent response of the biosensor to HER3 antigen is found in the range 300 fg mL−1to 300 ng mL−1and is in quantitative agreement with a model based on the Hill–Langmuir equation of equilibrium thermodynamics. Based on the dose–response data, the dissociation constant is estimated to be 800 pg mL−1, indicating that the high affinity of the scFv antibody is maintained after immobilization. The limit of detection is 300 fg mL−1, showing the potential for PtNP/G‐FETs to be used in label‐free biological sensors.

    more » « less
  3. Abstract

    While immunoglobulins find ubiquitous use in biotechnology as static binders, recent developments have created proantibodies that enable orthogonal switch‐like behavior to antibody function. Previously, peptides with low binding affinity have been genetically fused to antibodies, to proteolytically control binding function by blocking the antigen‐binding site. However, development of these artificial blockers requires panning for peptide sequences that reversibly affect antigen affinity for each antibody. Instead, a more general strategy to achieve dynamic control over antibody affinity may be feasible using protein M (ProtM) fromMycoplasma genitalium, a newly identified polyspecific immunity evasion protein that is capable of blocking antigen binding for a wide range of antibodies. Using C‐terminus truncation to identify ProtM variants that are still capable of binding to antibodies without the ability to block antigens, we developed a novel and universal biological switch for antibodies. Using a site‐specifically placed thrombin cut site, antibody affinity can be modulated by cleavage of the two distinct antibody‐binding and antigen‐blocking domains of ProtM. Because of the high affinity of ProtM toward a large variety of IgG subtypes, this strategy may be used as a universal approach to create proantibodies that are conditionally activated by disease‐specific proteases such as matrix metalloproteinases.

    more » « less
  4. Rationale

    The function of a protein or the binding affinity of an antibody can be substantially altered by the replacement of leucine (Leu) with isoleucine (Ile), and vice versa, so the ability to identify the correct isomer using mass spectrometry can help resolve important biological questions. Tandem mass spectrometry approaches for Leu/Ile (Xle) discrimination have been developed, but they all have certain limitations.


    Four model peptides and two wild‐type peptide sequences containing either Leu or Ile residues were subjected to charge transfer dissociation (CTD) mass spectrometry on a modified three‐dimensional ion trap. The peptides were analyzed in both the 1+ and 2+ charge states, and the results were compared to conventional collision‐induced dissociation spectra of the same peptides obtained using the same instrument.


    CTD resulted in 100% sequence coverage for each of the studied peptides and provided a variety of side‐chain cleavages, includingd,wandvions. Using CTD, reliabledandwions of Xle residues were observed more than 80% of the time. When present,dions are typically greater than 10% of the abundance of the correspondingaions from which they derive, andwions are typically more abundant than thezions from which they derive.


    CTD has the benefit of being applicable to both 1+ and 2+ precursor ions, and the overall performance is comparable to that of other high‐energy activation techniques like hot electron capture dissociation and UV photodissociation. CTD does not require chemical modifications of the precursor peptides, nor does it require additional levels of isolation and fragmentation.

    more » « less
  5. Abstract

    Immunoglobulin Binding Protein (BiP) is a chaperone and molecular motor belonging to the Hsp70 family, involved in the regulation of important biological processes such as synthesis, folding and translocation of proteins in the Endoplasmic Reticulum. BiP has two highly conserved domains: the N‐terminal Nucleotide‐Binding Domain (NBD), and the C‐terminal Substrate‐Binding Domain (SBD), connected by a hydrophobic linker. ATP binds and it is hydrolyzed to ADP in the NBD, and BiP's extended polypeptide substrates bind in the SBD. Like many molecular motors, BiP function depends on both structural and catalytic properties that may contribute to its performance. One novel approach to study the mechanical properties of BiP considers exploring the changes in the viscoelastic behavior upon ligand binding, using a technique called nano‐rheology. This technique is essentially a traditional rheology experiment, in which an oscillatory force is directly applied to the protein under study, and the resulting average deformation is measured. Our results show that the folded state of the protein behaves like a viscoelastic material, getting softer when it binds nucleotides‐ ATP, ADP, and AMP‐PNP‐, but stiffer when binding HTFPAVL peptide substrate. Also, we observed that peptide binding dramatically increases the affinity for ADP, decreasing it dissociation constant (KD) around 1000 times, demonstrating allosteric coupling between SBD and NBD domains.

    more » « less