skip to main content

Title: Deep cerebellar stimulation reduces ataxic motor symptoms in the shaker rat

Degenerative cerebellar ataxias (DCAs) affect up to 1 in 5,000 people worldwide, leading to incoordination, tremor, and falls. Loss of Purkinje cells, nearly universal across DCAs, dysregulates the dentatothalamocortical network. To address the paucity of treatment strategies, we developed an electrical stimulation‐based therapy for DCAs targeting the dorsal dentate nucleus.


We tested this therapeutic strategy in the Wistar Furthshakerrat model of Purkinje cell loss resulting in tremor and ataxia. We implantedshakerrats with stimulating electrodes targeted to the dorsal dentate nucleus and tested a spectrum of frequencies ranging from 4 to 180 Hz.


Stimulation at 30 Hz most effectively reduced motor symptoms. Stimulation frequencies >100 Hz, commonly used for parkinsonism and essential tremor, worsened incoordination, and frequencies within the tremor physiologic range may worsen tremor.


Low‐frequency deep cerebellar stimulation may provide a novel strategy for treating motor symptoms of degenerative cerebellar ataxias. Ann Neurol 2019;85:681–690

 ;  ;  ;  
Publication Date:
Journal Name:
Annals of Neurology
Page Range or eLocation-ID:
p. 681-690
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Essential tremor (ET) is among the most prevalent movement disorders, but its origins are elusive. The inferior olivary nucleus (ION) has been hypothesized as the prime generator of tremor because of the pacemaker properties of ION neurons, but structural and functional changes in ION are unlikely under ET. Abnormalities have instead been reported in the cerebello-thalamo-cortical network, including dysfunctions of the GABAergic projections from the cerebellar cortex to the dentate nucleus. It remains unclear, though, how tremor would relate to a dysfunction of cerebellar connectivity. To address this question, we built a computational model of the cortico-cerebello-thalamo-cortical loop. We simulated the effects of a progressive loss of GABA A α 1 -receptor subunits and up-regulation of α 2/3 -receptor subunits in the dentate nucleus, and correspondingly, we studied the evolution of the firing patterns along the loop. The model closely reproduced experimental evidence for each structure in the loop. It showed that an alteration of amplitudes and decay times of the GABAergic currents to the dentate nucleus can facilitate sustained oscillatory activity at tremor frequency throughout the network as well as a robust bursting activity in the thalamus, which is consistent with observations of thalamic tremor cells in ET patients.more »Tremor-related oscillations initiated in small neural populations and spread to a larger network as the synaptic dysfunction increased, while thalamic high-frequency stimulation suppressed tremor-related activity in thalamus but increased the oscillation frequency in the olivocerebellar loop. These results suggest a mechanism for tremor generation under cerebellar dysfunction, which may explain the origin of ET.« less
  2. Objective

    To foster trial‐readiness of coenzyme Q8A (COQ8A)‐ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A‐ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10).


    Cross‐modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype–phenotype correlations, 3D‐protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data.


    Fifty‐nine patients (39 novel) with 44 pathogenicCOQ8Avariants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A‐ataxia presented as variable multisystemic, early‐onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss‐of‐function variants (82–93% vs 53%;p= 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross‐sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild‐to‐moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8more »of 11 patients (SARA: −0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%.


    This study provides a deeper understanding of the disease, and paves the way toward large‐scale natural history studies and treatment trials in COQ8A‐ataxia.ANN NEUROL 2020;88:251–263

    « less
  3. New Findings

    What is the topic of this review?

    The vagus nerve is a crucial regulator of cardiovascular homeostasis, and its activity is linked to heart health. Vagal activity originates from two brainstem nuclei: the nucleus ambiguus (fast lane) and the dorsal motor nucleus of the vagus (slow lane), nicknamed for the time scales that they require to transmit signals.

    What advances does it highlight?

    Computational models are powerful tools for organizing multi‐scale, multimodal data on the fast and slow lanes in a physiologically meaningful way. A strategy is laid out for how these models can guide experiments aimed at harnessing the cardiovascular health benefits of differential activation of the fast and slow lanes.


    The vagus nerve is a key mediator of brain–heart signaling, and its activity is necessary for cardiovascular health. Vagal outflow stems from the nucleus ambiguus, responsible primarily for fast, beat‐to‐beat regulation of heart rate and rhythm, and the dorsal motor nucleus of the vagus, responsible primarily for slow regulation of ventricular contractility. Due to the high‐dimensional and multimodal nature of the anatomical, molecular and physiological data on neural regulation of cardiac function, data‐derived mechanistic insights have proven elusive. Elucidating insights has been complicated further by the broad distribution ofmore »the data across heart, brain and peripheral nervous system circuits. Here we lay out an integrative framework based on computational modelling for combining these disparate and multi‐scale data on the two vagal control lanes of the cardiovascular system. Newly available molecular‐scale data, particularly single‐cell transcriptomic analyses, have augmented our understanding of the heterogeneous neuronal states underlying vagally mediated fast and slow regulation of cardiac physiology. Cellular‐scale computational models built from these data sets represent building blocks that can be combined using anatomical and neural circuit connectivity, neuronal electrophysiology, and organ/organismal‐scale physiology data to create multi‐system, multi‐scale models that enablein silicoexploration of the fast versus slow lane vagal stimulation. The insights from the computational modelling and analyses will guide new experimental questions on the mechanisms regulating the fast and slow lanes of the cardiac vagus toward exploiting targeted vagal neuromodulatory activity to promote cardiovascular health.

    « less
  4. Deep Brain Stimulation (DBS) of the subthalamic nucleus (STN) is a surgical procedure for alleviating motor symptoms of Parkinson’s Disease (PD). The pattern of DBS (e.g., the electrode pairs used and the intensity of stimulation) is usually optimized by trial and error based on a subjective evaluation of motor function. We tested the hypotheses that DBS releases glutamate in selected basal ganglia nuclei and that the creation of 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions alters glutamate release during DBS in those basal ganglia nuclei. We studied the relationship between a pseudo-random binary sequence of DBS and glutamate levels in the STN itself or in the globus pallidus (GP) in anesthetized, control, and 6-OHDA-treated rats. We characterized the stimulus–response relationships between DBS and glutamate levels using a transfer function estimated using System Identification. Stimulation of the STN elevated glutamate levels in the GP and in the STN. Although the 6-OHDA treatment did not affect glutamate dynamics in the STN during DBS in the STN, the transfer function between DBS in the STN and glutamate levels in the GP was significantly altered by the presence or absence of 6-OHDA-induced lesions. Thus, glutamate responses in the GP in the 6-OHDA-treated animals (but not in themore »STN) depended on dopaminergic inputs. For this reason, measuring glutamate levels in the GP may provide a useful feedback target in a closed-loop DBS device in patients with PD since the dynamics of glutamate release in the GP during DBS seem to reflect the loss of dopaminergic neurons in the SNc.« less
  5. Abstract Background

    The purpose of this study was to evaluate if kilohertz frequency alternating current (KHFAC) stimulation of peripheral nerve could serve as a treatment for lumbar radiculopathy. Prior work shows that KHFAC stimulation can treat sciatica resulting from chronic sciatic nerve constriction. Here, we evaluate if KHFAC stimulation is also beneficial in a more physiologic model of low back pain which mimics nucleus pulposus (NP) impingement of a lumbar dorsal root ganglion (DRG).


    To mimic a lumbar radiculopathy, autologous tail NP was harvested and placed upon the right L5 nerve root and DRG. During the same surgery, a cuff electrode was implanted around the sciatic nerve with wires routed to a headcap for delivery of KHFAC stimulation. Male Lewis rats (3 mo.,n = 18) were separated into 3 groups: NP injury + KHFAC stimulation (n = 7), NP injury + sham cuff (n = 6), and sham injury + sham cuff (n = 5). Prior to surgery and for 2 weeks following surgery, animal tactile sensitivity, gait, and static weight bearing were evaluated.


    KHFAC stimulation of the sciatic nerve decreased behavioral evidence of pain and disability. Without KHFAC stimulation, injured animals had heightened tactile sensitivity compared to baseline (p < 0.05), with tactile allodynia reversed during KHFAC stimulation (p < 0.01). Midfoot flexion during locomotion was decreased after injurymore »but improved with KHFAC stimulation (p < 0.05). Animals also placed more weight on their injured limb when KHFAC stimulation was applied (p < 0.05). Electrophysiology measurements at end point showed decreased, but not blocked, compound nerve action potentials with KHFAC stimulation (p < 0.05).


    KHFAC stimulation decreases hypersensitivity but does not cause additional gait compensations. This supports the idea that KHFAC stimulation applied to a peripheral nerve may be able to treat chronic pain resulting from sciatic nerve root inflammation.

    « less