The snowball Earth hypothesis predicts that continental chemical weathering diminished substantially during, but rebounded strongly after, the Marinoan ice age some 635 Mya. Defrosting the planet would result in a plume of fresh glacial meltwater with a different chemical composition from underlying hypersaline seawater, generating both vertical and lateral salinity gradients. Here, we test the plumeworld hypothesis using lithium isotope compositions in the Ediacaran Doushantuo cap dolostone that accumulated in the aftermath of the Marinoan snowball Earth along a proximal–distal (nearshore–offshore) transect in South China. Our data show an overall decreasing δ7Li trend with distance from the shoreline, consistent with the variable mixing of a meltwater plume with high δ7Li (due to incongruent silicate weathering on the continent) and hypersaline seawater with low δ7Li (due to synglacial distillation). The evolution of low δ7Li of synglacial seawater, as opposed to the modern oceans with high δ7Li, was likely driven by weak continental chemical weathering coupled with strong reverse weathering on the seafloor underneath silica-rich oceans. The spatial pattern of δ7Li is also consistent with the development and then collapse of the meltwater plume that occurred at the time scale of cap dolostone accumulation. Therefore, the δ7Li data are consistent with the plumeworld hypothesis, considerably reduced chemical weathering on the continent during the Marinoan snowball Earth, and enhanced reverse weathering on the seafloor of Precambrian oceans. 
                        more » 
                        « less   
                    
                            
                            K isotopes as a tracer for continental weathering and geological K cycling
                        
                    
    
            The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = −0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth’s history. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1741048
- PAR ID:
- 10091541
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. 201811282
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Lithium isotope ratios (δ7Li) of rivers are increasingly serving as a diagnostic of the balance between chemical and physical weathering contributions to overall landscape denudation rates. Here, we show that intermediate weathering intensities and highly enriched stream δ7Li values typically associated with lowland floodplains can also describe small upland watersheds subject to cool, wet climates. This behavior is revealed by stream δ7Li between +22.4 and +23.5‰ within a Critical Zone observatory located in the Cévennes region of southern France, where dilute stream solute concentrations and significant atmospheric deposition otherwise mask evidence of incongruence. The water‐rock reaction pathways underlying this behavior are quantified through a multicomponent, isotope‐enabled reactive transport model. Using geochemical characterization of soil profiles, bedrock, and long‐term stream samples as constraints, we evolve the simulation from an initially unweathered granite to a steady state weathering profile which reflects the balance between (a) fluid infiltration and drainage and (b) bedrock uplift and soil erosion. Enriched stream δ7Li occurs because Li is strongly incorporated into actively precipitating secondary clay phases beyond what prior laboratory experiments have suggested. Chemical weathering incongruence is maintained despite relatively slow reaction rates and moderate clay accumulation due to a combination of two factors. First, reactive primary mineral phases persist across the weathering profile and effectively “shield” the secondary clays from resolubilization due to their greater solubility. Second, the clays accumulating in the near‐surface profile are relatively mature weathering byproducts. These factors promote characteristically low total dissolved solute export from the catchment despite significant input of exogenous dust.more » « less
- 
            To date, the vast majority of studies seeking to link discharge to solute concentrations have been based on representations of fluid age distributions in watersheds that are time-invariant. As increasingly detailed spatial and temporal datasets become available for weathering-derived riverine solute concentrations, the capacity to link this mass flux to transient routing of reactive fluids through Critical Zone environments is vital to quantitative interpretation. Relationships between fluid age distributions and the stable isotope ratios of these geogenic solutes are even less developed, yet these signatures are vital to parsing the suite of water-rock-life interactions that create concentration-discharge relationships. Here we offer the first merging of a hydrological model featuring time-variant fluid age distributions with a geochemical model for isotopically fractionating weathering reactions. Using SiO2(aq)and the corresponding silicon isotope ratio 30Si as an example, we show that the stable isotope signatures of riverine solutes produced by weathering reactions reflect a component of the fluid age distribution that is unique to the corresponding solute concentrations. This distinct sensitivity is the result of a stronger link between isotope ratios and the age distribution parameters describing a given watershed. This novel modeling framework is used to provide a quantitative basis for the interpretation of SiO2(aq)and 30Si in six low-order streams spread across a diversity of climates, geologies, and ecosystems. To our knowledge, this is the first forward and process-based model to describe the isotopic signatures of solutes derived from weathering reactions in watersheds subject to time-varying discharge.more » « less
- 
            The isotopic composition of barium (δ138Ba) has emerged as a powerful tracer of deep-ocean circulation, water mass provenance, and the oceanic Ba cycle. Although the δ138Ba of water masses is primarily controlled by the balance between pelagic barite precipitation and Ba resupply from ocean circulation, questions remain regarding the isotopic offset associated with pelagic barite formation and how the resultant Ba isotope compositions are transmitted through the water column to marine sediments. To address these questions, we conducted a time series study of dissolved, particulate, and sedimentary Ba chemistry in the Gulf of Aqaba (GOA), in the northern Red Sea, from January 2015 to April 2016. These data span significant seasonal changes in hydrography, primary productivity, and aerosol deposition, revealing three principal findings. First, the dissolved Ba chemistry of the GOA is vertically uniform across the time series, largely reflecting water mass advection from the Red Sea, with mean dissolved Ba concentrations of 47.9 ± 4.7 nmol kg−1and mean δ138Ba = +0.55‰ ± 0.07‰ (±2 SD,n= 18). Second, despite significant variations in particulate matter composition and flux, the δ138Ba of sinking particulate Ba maintained a consistent isotope composition across different depths and over time at +0.09‰ ± 0.06‰ (n= 26). Consequently, these data imply a consistent Ba isotope offset of −0.46‰ ± 0.10‰ (±2 SD) between sinking particulates and seawater. This offset is similar to those determined in previous studies and indicates that it applies to particulates formed across diverse environmental conditions. Third, barite-containing sediment samples deposited in the GOA exhibit δ138Ba = +0.34‰ ± 0.03‰, which is offset by approximately +0.2‰ relative to sinking particles. While the specific mechanism driving this offset remains unresolved, our results highlight the importance of performing site-specific proxy validations and exercising careful site selection when applying novel paleoceanographic proxies.more » « less
- 
            Tracing how free-ranging organisms interact with their environment to maintain water balance is a difficult topic to study for logistical and methodological reasons. We use a novel combination of triple-oxygen stable isotope analyses of water extracted from plasma (δ16O, δ17O, δ18O) and bulk tissue carbon (δ13C) and nitrogen (δ15N) isotopes of feathers and blood to estimate the proportional contribution of marine resources, seawater, and metabolic water used by two species of unique songbirds (genusCinclodes) to maintain their water balance in a seasonal coastal environment. We also assessed the physiological adjustments that these birds use to maintain their water balance. In agreement with previous work on these species, δ13C and δ15N data show that the coastal resident and invertivoreC. nigrofumosusconsumes a diet rich in marine resources, while the diet of migratoryC. oustaletishifts seasonally between marine (winter) to freshwater aquatic resources (summer). Triple-oxygen isotope analysis (Δ17O) of blood plasma, basal metabolic rate (BMR), and total evaporative water loss (TEWL) revealed that ~25% of the body water pool of both species originated from metabolic water, while the rest originated from a mix of seawater and fresh water. Δ17O measurements suggest that the contribution of metabolic water tends to increase in summer inC. nigrofumosus, which is coupled with a significant increase in BMR and TEWL. The two species had similar BMR and TEWL during the austral winter when they occur sympatrically in coastal environments. We also found a positive and significant association between the use of marine resources as measured by δ13C and δ15N values and the estimated δ18O values of ingested (pre-formed) water in both species, which indicates that Cinclodes do not directly drink seawater but rather passively ingest when consuming marine invertebrates. Finally, results obtained from physiological parameters and the isotope-based estimates of marine (food and water) resource use are consistent, supporting the use of the triple-oxygen isotopes to quantify the contribution of water sources to the total water balance of free-ranging birds.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
