skip to main content

Title: Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression

Effective cancer therapies often demand delivery of combinations of drugs to inhibit multidrug resistance through synergism, and the development of multifunctional nanovehicles with enhanced drug loading and delivery efficiency for combination therapy is currently a major challenge in nanotechnology. However, such combinations are more challenging to administer than single drugs and can require multipronged approaches to delivery. In addition to being stable and biodegradable, vehicles for such therapies must be compatible with both hydrophobic and hydrophilic drugs, and release drugs at sustained therapeutic levels. Here, we report synthesis of porous silicon nanoparticles conjugated with gold nanorods [composite nanoparticles (cNPs)] and encapsulate them within a hybrid polymersome using double-emulsion templates on a microfluidic chip to create a versatile nanovehicle. This nanovehicle has high loading capacities for both hydrophobic and hydrophilic drugs, and improves drug delivery efficiency by accumulating at the tumor after i.v. injection in mice. Importantly, a triple-drug combination suppresses breast tumors by 94% and 87% at total dosages of 5 and 2.5 mg/kg, respectively, through synergy. Moreover, the cNPs retain their photothermal properties, which can be used to significantly inhibit multidrug resistance upon near-infrared laser irradiation. Overall, this work shows that our nanovehicle has great potential as a drug more » codelivery nanoplatform for effective combination therapy that is adaptable to other cancer types and to molecular targets associated with disease progression.

« less
; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1708729 1420570
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
p. 7744-7749
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure–activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL–NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL–NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually leadmore »to combination therapies with NAs and drugs for cancer and other diseases.« less
  2. Linear-dendritic block copolymers (LDBCs) have emerged as promising materials for drug delivery applications, with their hybrid structure exploiting advantageous properties of both linear and dendritic polymers. LDBCs have promising encapsulation efficiencies that can be used to encapsulate both hydrophobic and hydrophilic dyes for bioimaging, cancer therapeutics, and small biomolecules. Additionally, LDBCS can be readily functionalized with varying terminal groups for more efficient targeted delivery. However, depending on structural composition and surface properties, LDBCs also exhibit high dispersities ( Đ ), poor shelf-life, and potentially high cytotoxicity to non-target interfacing blood cells during intravenous drug delivery. Here, we show that choline carboxylic acid-based ionic liquids (ILs) electrostatically solvate LDBCs by direct dissolution and form stable and biocompatible IL-integrated LDBC nano-assemblies. These nano-assemblies are endowed with red blood cell-hitchhiking capabilities and show altered cellular uptake behavior ex vivo . When modified with choline and trans -2-hexenoic acid, IL-LDBC dispersity dropped by half compared to bare LDBCs, and showed a significant shift of the cationic surface charge towards neutrality. Proton nuclear magnetic resonance spectroscopy evidenced twice the total amount of IL on the LDBCs relative to an established IL-linear PLGA platform. Transmission electron microscopy suggested the formation of a nanoparticle surface coating, whichmore »acted as a protective agent against RBC hemolysis, reducing hemolysis from 73% (LDBC) to 25% (IL-LDBC). However, dramatically different uptake behavior of IL-LDBCs vs. IL-PLGA NPs in RAW 264.7 macrophage cells suggests a different conformational IL-NP surface assembly on the linear versus the linear-dendritic nanoparticles. These results suggest that by controlling the physical chemistry of polymer-IL interactions and assembly on the nanoscale, biological function can be tailored toward the development of more effective and more precisely targeted therapies.« less
  3. Abstract The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple-negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor–stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAF) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor–stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit prometastatic functions of TNBC cells. Our study also showed that HGF from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor modelmore »to identify and therapeutically target specific mechanisms of tumor–stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. Implications: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target.« less
  4. Hubert, Florence (Ed.)
    Cell competition is recognized to be instrumental to the dynamics and structure of the tumor-host interface in invasive cancers. In mild competition scenarios, the healthy tissue and cancer cells can coexist. When the competition is aggressive, competitive cells, the so called super-competitors, expand by killing other cells. Novel chemotherapy drugs and molecularly targeted drugs are commonly administered as part of cancer therapy. Both types of drugs are susceptible to various mechanisms of drug resistance, obstructing or preventing a successful outcome. In this paper, we develop a cancer growth model that accounts for the competition between cancer cells and healthy cells. The model incorporates resistance to both chemotherapy and targeted drugs. In both cases, the level of drug resistance is assumed to be a continuous variable ranging from fully-sensitive to fully-resistant. Using our model we demonstrate that when the competition is moderate, therapies using both drugs are more effective compared with single drug therapies. However, when cancer cells are highly competitive, targeted drugs become more effective. The results of the study stress the importance of adjusting the therapy to the pre-treatment resistance levels. We conclude with a study of the spatiotemporal propagation of drug resistance in a competitive setting, verifying thatmore »the same conclusions hold in the spatially heterogeneous case.« less
  5. Gene therapy holds tremendous potential for the treatment of incurable brain diseases including Alzheimer's disease (AD), stroke, glioma, and Parkinson's disease. The main challenge is the lack of effective gene delivery systems traversing the blood–brain barrier (BBB), due to the complex microvessels present in the brain which restrict substances from the circulating blood passing through. Recently, increasing efforts have been made to develop promising gene carriers for brain-related disease therapies. One such development is the self-assembled heavy chain ferritin (HFn) nanoparticles (NPs). HFn NPs have a unique hollow spherical structure that can encapsulate nucleic acid drugs (NADs) and specifically bind to cancer cells and BBB endothelial cells (BBB ECs) via interactions with the transferrin receptor 1 (TfR1) overexpressed on their surfaces, which increases uptake through the BBB. However, the gene-loading capacity of HFn is restricted by its limited interior volume and negatively charged inner surface; therefore, these drawbacks have prompted the demand for strategies to remould the structure of HFn. In this work, we analyzed the three-dimensional (3D) structure of HFn using Chimera software (v 1.14) and developed a class of internally cationic HFn variants (HFn+ NPs) through arginine mutation on the lumenal surface of HFn. These HFn+ NPs presentedmore »powerful electrostatic forces in their cavities, and exhibited higher gene encapsulation efficacy than naive HFn. The top-performing candidate, HFn2, effectively delivered siRNA to glioma cells after traversing the BBB and achieved the highest silencing efficacy among HFn+ NPs. Overall, our findings demonstrate that HFn+ NPs obtained by this genetic engineering method provide critical insights into the future development of nucleic acid delivery carriers with BBB-crossing ability.« less