skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Experimental evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite: MELT PARTITIONING IN HARZBURGITE
Award ID(s):
1551300 1250338
NSF-PAR ID:
10091742
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
121
Issue:
8
ISSN:
2169-9313
Page Range / eLocation ID:
5776 to 5793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mineral/melt partition coefficients have been widely used to provide insights into magmatic processes. Olivine is one of the most abundant and important minerals in the lunar mantle and mare basalts. Yet, no systematic olivine/melt partitioning data are available for lunar conditions. We report trace element partition data between host mineral olivine and its melt inclusions in lunar basalts. Equilibrium is evaluated using the Fe-Mg exchange coefficient, leading to the choice of melt inclusion-host olivine pairs in lunar basalts 12040, 12009, 15016, 15647, and 74235. Partition coefficients of 21 elements (Li, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Y, Zr, Nb, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were measured. Except for Li, V, and Cr, these elements show no significant difference in olivine-melt partitioning compared to the data for terrestrial samples. The partition coefficient of Li between olivine and melt in some lunar basalts with low Mg# (Mg# < 0.75 in olivine, or < ~0.5 in melt) is higher than published data for terrestrial samples, which is attributed to the dependence of DLi on Mg# and the lack of literature DLi data with low Mg#. The partition coefficient of V in lunar basalts is measured to be 0.17 to 0.74, significantly higher than that in terrestrial basalts (0.003 to 0.21), which can be explained by the lower oxygen fugacity in lunar basalts. The significantly higher DV can explain why V is less enriched in evolved lunar basalts than terrestrial basalts. The partition coefficient of Cr between olivine and basalt melt in the Moon is 0.11 to 0.62, which is lower than those in terrestrial settings by a factor of ~2. This is surprising because previous authors showed that Cr partition coefficient is independent of fO2. A quasi-thermodynamically based model is developed to correlate Cr partition coefficient to olivine and melt composition and fO2. The lower Cr partition coefficient between olivine and basalt in the Moon can lead to more Cr enrichment in the lunar magma ocean, as well as more Cr enrichment in mantle-derived basalts in the Moon. Hence, even though Cr is typically a compatible element in terrestrial basalts, it is moderately incompatible in primitive lunar basalts, with a similar degree of incompatibility as V based on partition coefficients in this work, as also evidenced by the relatively constant V/Cr ratio of 0.039 ± 0.011 in lunar basalts. The confirmation of constant V/Cr ratio is important for constraining concentrations of Cr (slightly volatile and siderophile) and V (slightly siderophile) in the bulk silicate Moon. 
    more » « less
  2. Subduction of oceanic plates releases large amounts of chlorine and fluorine into the mantle. These halogens are transported into the crust through hydrous melting, where they may be incorporated into minerals such as biotite, apatite, and amphibole. Halogen concentrations are measured in volcanic or plutonic material, while the concentration of Cl and F released from the subducting slab must be calculated based upon the amount of crystallized material and the partition coefficients of each mineral. As amphibole is the most common halogen bearing igneous mineral, it is commonly studied as a bearer of Cl and F. However, the partition coefficient of F between amphibole and a hydrous melt has not been agreed upon by previous studies. Here we show that F is moderately to highly compatible in amphibole, in agreement with other experiments performed at crustal conditions. As amphibole may be able to incorporate a large amount of F, cryptic amphibole crystallization may raise the Cl/F ratio of residual magma, which will then be transported to the surface bearing this geochemical signature, even with little crystallized amphibole present in erupted material. This provides further evidence for the occurrence of cryptic amphibole crystallization, previously predicted based on REE studies and phase equilibria. A better understanding of the halogen reservoirs present in the crust will allow for more accurate estimates of the amount of Cl and F released by subducting slabs. 
    more » « less
  3. Abstract

    The conditions under which halogens partition in favor of an exsolved fluid relative to the coexisting melt are key for understanding many magmatic processes, including volcanic degassing, evolution of crustal melt bodies, and ore formation. We report new F, Cl, and Br fluid/melt partition coefficients for intermediate to silicic melts, for which F and Br data are particularly lacking; and for varying CO2-H2O contents to assess the effects of changing fluid composition (XH2O) on Br fluid/melt partitioning for the first time. The experiments were conducted at pressures 50–120 MPa, temperatures 800–1100 °C, and volatile compositions [molar XH2O = H2O/(H2O +CO2)] of 0.55 to 1, with redox conditions around the Nickel-Nickel Oxygen buffer (fO2 ≈ NNO). Experiments were not doped with Cl, Br, or F and were conducted on natural crystal-bearing volcanic products at conditions close to their respective pre-eruptive state. The experiments therefore provide realistic constraints on halogen partitioning at naturally occurring, brine-undersaturated conditions. Measurements of Br, Cl, and F were made by Secondary Ion Mass Spectrometry (SIMS) on 13 experimental glass products spanning andesite to rhyolitic compositions, together with their natural starting materials from Kelud volcano, Indonesia, and Quizapu volcano, Chile. Fluid compositions were constrained by mass balance. Average bulk halogen fluid/melt partition coefficients and standard deviations are: DClfluid/melt = 3.4 (±3.7 1 s.d.), DFfluid/melt = 1.7 (±1.7), and DBrfluid/melt = 7.1 (±6.4) for the Kelud starting material (bulk basaltic andesite), and DClfluid/melt = 11.1 (±3.5), DFfluid/melt = 0.8 (±0.8), and DBrfluid/melt = 31.3 (±20.9) for Quizapu starting material (bulk dacite). The large range in average partition coefficients is a product of changing XH2O, pressure and temperature. In agreement with studies on synthetic melts, our data show an exponential increase of halogen Dfluid/melt with increasing ionic radius, with partitioning behavior controlled by melt composition according to the nature of the complexes forming in the melt (e.g., SiF4, NaCl, KBr). The fundamental chemistry of the different halogens (differing ionic size and electronegativities) controls the way in which partitioning responds to changes in melt composition and other variables. Experimental results confirm that more Cl partitions into the fluid at higher bulk Cl contents, higher melt Na, higher fluid XH2O ratios, and lower temperatures. Bromine shows similar behavior, though it seems to be more sensitive to temperature and less sensitive to Na content and XH2O. In contrast, F partitioning into the fluid increases as the melt silica content decreases (from 72 to 56 wt% SiO2), which we attribute to the lower abundance of Si available to form F complexes in the melt. These new data provide more insights into the conditions and processes that control halogen degassing from magmas and may help to inform the collection and interpretation of melt inclusions and volcano gas data.

     
    more » « less
  4. Abstract

    Stress‐driven melt segregation may have important geochemical and geophysical effects but remains a poorly understood process. Few constraints exist on the permeability and distribution of melt in deformed partially molten rocks. Here, we characterize the 3D melt network and resulting permeability of an experimentally deformed partially molten rock containing several melt‐rich bands based on an X‐ray microtomography data set. Melt fractions range from 0.08 to 0.28 in the ∼20‐μm‐thick melt‐rich bands, and from 0.02 to 0.07 in the intervening ∼30‐μm‐thick regions. We simulated melt flow through subvolumes extracted from the reconstructed rock at five length scales ranging from the grain scale (3 μm) to the minimum length required to fully encompass two melt‐rich bands (64 μm). At grain scale, few subvolumes contain interconnected melt, and permeability is isotropic. As the length scale increases, more subvolumes contain melt that is interconnected parallel to the melt bands, but connectivity diminishes in the direction perpendicular to them. Even if melt is connected in all directions, permeability is lower perpendicular to the bands, in agreement with the elongation of melt pockets. Permeability parallel to the bands is proportional to melt fraction to the power of an exponent that increases from ∼2 to 5 with increasing length scale. The permeability in directions parallel to the bands is comparable to that for an isotropic partially molten rock. However, no flow is possible perpendicular to the bands over distances similar to the band spacing. Melt connectivity limits sample scale melt flow to the plane of the melt‐rich bands.

     
    more » « less