skip to main content


Title: Fault slip controlled by stress path and fluid pressurization rate: FAULT SLIP DURING FLUID PRESSURIZATION
Award ID(s):
1056317
NSF-PAR ID:
10091750
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
43
Issue:
9
ISSN:
0094-8276
Page Range / eLocation ID:
4330 to 4339
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Earthquake swarms attributed to subsurface fluid injection are usually assumed to occur on faults destabilized by increased pore-fluid pressures. However, fluid injection could also activate aseismic slip, which might outpace pore-fluid migration and transmit earthquake-triggering stress changes beyond the fluid-pressurized region. We tested this theoretical prediction against data derived from fluid-injection experiments that activated and measured slow, aseismic slip on preexisting, shallow faults. We found that the pore pressure and slip history imply a fault whose strength is the product of a slip-weakening friction coefficient and the local effective normal stress. Using a coupled shear-rupture model, we derived constraints on the hydromechanical parameters of the actively deforming fault. The inferred aseismic rupture front propagates faster and to larger distances than the diffusion of pressurized pore fluid. 
    more » « less
  2. There is scientific and industrial interest in understanding how geologic faults respond to transient sources of fluid. Natural and artificial sources can elevate pore fluid pressure on the fault frictional interface, which may induce slip. We consider a simple boundary value problem to provide an elementary model of the physical process and to provide a benchmark for numerical solution procedures. We examine the slip of a fault that is an interface of two elastic half-spaces. Injection is modelled as a line source at constant pressure and fluid pressure is assumed to diffuse along the interface. The resulting problem is an integro-differential equation governing fault slip, which has a single dimensionless parameter. The expansion of slip is self-similar and the rupture front propagates at a factor $\lambda$ of the diffusive length scale $\sqrt {\alpha t}$ . We identify two asymptotic regimes corresponding to $\lambda$ being small or large and perform a perturbation expansion in each limit. For large $\lambda$ , in the regime of a so-called critically stressed fault, a boundary layer emerges on the diffusive length scale, which lags far behind the rupture front. We demonstrate higher-order matched asymptotics for the integro-differential equation, and in doing so, we derive a multipole expansion to capture successive orders of influence on the outer problem for fault slip for a driving force that is small relative to the crack dimensions. Asymptotic expansions are compared with accurate numerical solutions to the full problem, which are tabulated to high precision. 
    more » « less
  3. Abstract

    Fluid injection stimulates seismicity far from active tectonic regions. However, the details of how fluids modify on‐fault stresses and initiate seismic events remain poorly understood. We conducted laboratory experiments using a biaxial loading apparatus with a 3 m saw‐cut granite fault and compared events induced at different levels of background shear stress. Water was injected at 10 mL/min and normal stress was constant at 4 MPa. In all experiments, aseismic slip initiated on the fault near the location of fluid injection and dynamic rupture eventually initiated from within the aseismic slipping patch. When the fault was near critically stressed, seismic slip initiated only seconds after MPa‐level injection pressures were reached and the dynamic rupture propagated beyond the fluid pressure perturbed region. At lower stress levels, dynamic rupture initiated hundreds of seconds later and was limited to regions where aseismic slip had significantly redistributed stress from within the pressurized region to neighboring locked patches. We found that the initiation of slow slip was broadly consistent with a Coulomb failure stress, but that initiation of dynamic rupture required additional criteria to be met. Even high background stress levels required aseismic slip to modify on‐fault stress to meet initiation criteria. We also observed slow slip events prior to dynamic rupture. Overall, our experiments suggest that initial fault stress, relative to fault strength, is a critical factor in determining whether a fluid‐induced rupture will “runaway” or whether a fluid‐induced rupture will remain localized to the fluid pressurized region.

     
    more » « less
  4. ABSTRACT Frictional heating during earthquake rupture raises the fault-zone fluid pressure, which affects dynamic rupture and seismic radiation. Here, we investigate two key parameters governing thermal pressurization of pore fluids – hydraulic diffusivity and shear-zone half-width – and their effects on earthquake rupture dynamics, kinematic source properties, and ground motions. We conduct 3D strike-slip dynamic rupture simulations assuming a rate-and-state dependent friction law with strong velocity weakening coupled to thermal-pressurization of pore fluids. Dynamic rupture evolution and ground shaking are densely evaluated across the fault and Earth’s surface to analyze the variations of rupture parameters (slip, peak slip rate, rupture speed, and rise time), correlations among rupture parameters, and variability of peak ground velocity. Our simulations reveal how variations in thermal-pressurization affect earthquake rupture properties. We find that the mean slip and rise time decrease with increasing hydraulic diffusivity, whereas mean rupture speed and peak slip-rate remain almost constant. Mean slip, peak slip-rate, and rupture speed decrease with increasing shear-zone half-width, whereas mean rise time increases. Shear-zone half-width distinctly affects the correlation between rupture parameters, especially for parameter pairs (slip, rupture speed), (peak slip-rate, rupture speed), and (rupture speed, rise time). Hydraulic diffusivity has negligible effects on these correlations. Variations in shear-zone half-width primarily impact rupture speed, which then may affect other rupture parameters. We find a negative correlation between slip and peak slip-rate, unlike simpler dynamic rupture models. Mean peak ground velocities decrease faster with increasing shear-zone half-width than with increasing hydraulic diffusivity, whereas ground-motion variability is similarly affected by both the parameters. Our results show that shear-zone half-width affects rupture dynamics, kinematic rupture properties, and ground shaking more strongly than hydraulic diffusivity. We interpret the importance of shear-zone half-width based on the characteristic time of diffusion. Our findings may inform pseudodynamic rupture generators and guide future studies on how to account for thermal-pressurization effects. 
    more » « less