Metal oxide (MO) semiconductor thin films prepared from solution typically require multiple hours of thermal annealing to achieve optimal lattice densification, efficient charge transport, and stable device operation, presenting a major barrier to roll-to-roll manufacturing. Here, we report a highly efficient, cofuel-assisted scalable combustion blade-coating (CBC) process for MO film growth, which involves introducing both a fluorinated fuel and a preannealing step to remove deleterious organic contaminants and promote complete combustion. Ultrafast reaction and metal–oxygen–metal (M-O-M) lattice condensation then occur within 10–60 s at 200–350 °C for representative MO semiconductor [indium oxide (In2O3), indium-zinc oxide (IZO), indium-gallium-zinc oxide (IGZO)] and dielectric [aluminum oxide (Al2O3)] films. Thus, wafer-scale CBC fabrication of IGZO-Al2O3thin-film transistors (TFTs) (60-s annealing) with field-effect mobilities as high as ∼25 cm2V−1s−1and negligible threshold voltage deterioration in a demanding 4,000-s bias stress test are realized. Combined with polymer dielectrics, the CBC-derived IGZO TFTs on polyimide substrates exhibit high flexibility when bent to a 3-mm radius, with performance bending stability over 1,000 cycles.
- Publication Date:
- NSF-PAR ID:
- 10091784
- Journal Name:
- Proceedings of the National Academy of Sciences
- Page Range or eLocation-ID:
- Article No. 201901492
- ISSN:
- 0027-8424
- Publisher:
- Proceedings of the National Academy of Sciences
- Sponsoring Org:
- National Science Foundation
More Like this
-
The discovery of oxide electronics is of increasing importance today as one of the most promising new technologies and manufacturing processes for a variety of electronic and optoelectronic applications such as next-generation displays, batteries, solar cells, memory devices, and photodetectors[1]. The high potential use seen in oxide electronics is due primarily to their high carrier mobilities and their ability to be fabricated at low temperatures[2]. However, since the majority of oxide semiconductors are n-type oxides, current applications are limited to unipolar devices, eventually developing oxide-based bipolar devices such as p-n diodes and complementary metal-oxide semiconductors. We have contributed to a wide range of oxide semiconductors and their electronics and optoelectronic device applications. Particularly, we have demonstrated n-type oxide-based thin film transistors (TFT), integrating In 2 O 3 -based n-type oxide semiconductors from binary cation materials to ternary cation species including InZnO, InGaZnO (IGZO), and InAlZnO. We have suggested channel/metallization contact strategies to achieve stable and high TFT performance[3, 4], identified vacancy-based native defect doping mechanisms[5], suggested interfacial buffer layers to promote charge injection capability[6], and established the role of third cation species on the carrier generation and carrier transport[7]. More recently, we have reported facile manufacturing of p-type SnOx throughmore »
-
The field-effect electron mobility of aqueous solution-processed indium gallium oxide (IGO) thin-film transistors (TFTs) is significantly enhanced by polyvinyl alcohol (PVA) addition to the precursor solution, a >70-fold increase to 7.9 cm2/Vs. To understand the origin of this remarkable phenomenon, microstructure, electronic structure, and charge transport of IGO:PVA film are investigated by a battery of experimental and theoretical techniques, including In K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS); resonant soft X-ray scattering (R-SoXS); ultraviolet photoelectron spectroscopy (UPS); Fourier transform-infrared (FT-IR) spectroscopy; time-of-flight secondary-ion mass spectrometry (ToF-SIMS); composition-/processing-dependent TFT properties; high-resolution solid-state1H,71Ga, and115In NMR spectroscopy; and discrete Fourier transform (DFT) analysis with ab initio molecular dynamics (MD) liquid-quench simulations. The71Ga{1H} rotational-echo double-resonance (REDOR) NMR and other data indicate that PVA achieves optimal H doping with a Ga···H distance of ∼3.4 Å and conversion from six- to four-coordinate Ga, which together suppress deep trap defect localization. This reduces metal-oxide polyhedral distortion, thereby increasing the electron mobility. Hydroxyl polymer doping thus offers a pathway for efficient H doping in green solvent-processed metal oxide films and the promise of high-performance, ultra-stable metal oxide semiconductor electronics with simple binary compositions.
-
The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability.more »
-
The major focus of artificial intelligence (AI) research is made on biomimetic synaptic processes that are mimicked by functional memory devices in the computer industry [1]. It is urgent to find a memory technology for suiting with Brain-Inspired Computing to break the von Neumann bottleneck which limits the efficiency of conventional computer architectures [2]. Silicon-based flash memory, which currently dominates the market for data storage devices, is facing challenging issues to meet the needs of future data storage device development due to the limitations, such as high-power consumption, high operation voltage, and low retention capacity [1]. The emerging resistive random-access memory (RRAM) has elicited intense research as its simple sandwiched structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer, can store data using RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). This class of emerging devices is expected to outperform conventional memory devices [3]. Specifically, the advantages of RRAM include low-voltage operation, short programming time, great cyclic stability, and good scalability [4]. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has attracted attention because of its abundance and high atomic diffusion property ofmore »
-
In recent years, oxide electronics has emerged as one of the most promising new technologies for a variety of electrical and optoelectronic applications, including next-generation displays, solar cells, batteries, and photodetectors. Oxide electronics have a lot of potential because of their high carrier mobilities and ability to be manufactured at low temperatures. However, the preponderance of oxide semiconductors is n-type oxides, limiting present applications to unipolar devices and stifling the development of oxide-based bipolar devices like p-n diodes and complementary metal-oxide–semiconductors. We have contributed to oxide electronics, particularly on transition metal oxide semiconductors of which the cations include In, Zn, Sn and Ga. We have integrated these oxide semiconductors into thin film transistors (TFTs) as active channel layer in light of the unique combination of electronic and optical properties such as high carrier mobility (5-10 cm2/Vs), optical transparency in the visible regime (>~90%) and mild thermal budget processing (200-400°C). In this study, we achieved four different results. The first result is that unlike several previous reports on oxide p-n junctions fabricated exploiting a thin film epitaxial growth technique (known as molecular beam epitaxy, MBE) or a high-powered laser beam process (known as pulsed laser deposition, PLD) that requires ultra-high vacuummore »