Under varying growth and device processing conditions, ultrabroadband photoconduction (UBPC) reveals strongly evolving trends in the defect density of states (DoS) for amorphous oxide semiconductor thin‐film transistors (TFTs). Spanning the wide bandgap of amorphous InGaZnO
Metal oxide (MO) semiconductor thin films prepared from solution typically require multiple hours of thermal annealing to achieve optimal lattice densification, efficient charge transport, and stable device operation, presenting a major barrier to roll-to-roll manufacturing. Here, we report a highly efficient, cofuel-assisted scalable combustion blade-coating (CBC) process for MO film growth, which involves introducing both a fluorinated fuel and a preannealing step to remove deleterious organic contaminants and promote complete combustion. Ultrafast reaction and metal–oxygen–metal (M-O-M) lattice condensation then occur within 10–60 s at 200–350 °C for representative MO semiconductor [indium oxide (In2O3), indium-zinc oxide (IZO), indium-gallium-zinc oxide (IGZO)] and dielectric [aluminum oxide (Al2O3)] films. Thus, wafer-scale CBC fabrication of IGZO-Al2O3thin-film transistors (TFTs) (60-s annealing) with field-effect mobilities as high as ∼25 cm2V−1s−1and negligible threshold voltage deterioration in a demanding 4,000-s bias stress test are realized. Combined with polymer dielectrics, the CBC-derived IGZO TFTs on polyimide substrates exhibit high flexibility when bent to a 3-mm radius, with performance bending stability over 1,000 cycles.
more » « less- PAR ID:
- 10091784
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. 201901492
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract x (a‐IGZO), UBPC identifies seven oxygen deep donor vacancy peaks that are independently confirmed by energetically matching to photoluminescence emission peaks. The subgap DoS from 15 different types of a‐IGZO TFTs all yield similar DoS, except only back‐channel etch TFTs can have a deep acceptor peak seen at 2.2 eV below the conduction band mobility edge. This deep acceptor is likely a zinc vacancy, evidenced by trap density which becomes 5‐6× larger when TFT wet‐etch methods are employed. Certain DoS peaks are strongly enhanced for TFTs with active channel processing damage caused from plasma exposure. While Ar implantation and He plasma processing damage are similar, Ar plasma yields more disorder showing a ≈2 × larger valence‐band Urbach energy, and two orders of magnitude increase in the deep oxygen vacancy trap density. Changing the growth conditions of a‐IGZO also impacts the DoS, with zinc‐rich TFTs showing much poorer electrical performance compared to 1:1:1 molar ratio a‐IGZO TFTs owing to the former having a ∼10 × larger oxygen vacancy trap density. Finally, hydrogen is found to behave as a donor in amorphous indium tin gallium zinc oxide TFTs. -
The authors investigate solution‐processed indium‐zinc‐oxide (IZO) thin‐film transistors (TFTs) into which the authors insert a 2‐(4‐biphenylyl)‐5‐(4‐tert‐butylphenyl)‐1,3,4‐oxadiazole (PBD) buffer layer. The proposed buffer layer tune an efficient energy level between the oxide semiconducting channel and metal electrode by increasing the charge extraction, thereby shifting the threshold voltage from 3.52 V to 8.96 V and enhancing overall device performance. In particular, based on 10‐nm‐thick PBD film, the IZO TFTs exhibit an excellent result and show a field‐effect mobility of 2.07 cm2 Vs−1, a high Ion/Ioffratio of 1.3 × 107, a threshold voltage of 6.36 V, and a subthreshold swing of 0.53 V dec−1.
-
Abstract In metal‐oxide thin‐film transistors (TFTs), high‐
k gate dielectrics often yield a higher electron mobility than SiO2. However, investigations regarding the mechanism of this high‐k “mobility boost” are relatively scarce. To explore this phenomenon, solution‐processed In2O3TFTs are fabricated using eight different gate dielectrics (SiO2, Al2O3, ZrO2, HfO2, and bilayer SiO2/high‐k structures). With these structures, the total gate capacitance can be varied independently from the semiconductor–dielectric interface to study this mobility enhancement. It is shown that the mobility enhancement is a combination of the effects of areal gate capacitance and interface quality for disordered oxide semiconductor devices. The ZrO2‐gated TFTs achieve the highest mobility by inducing more accumulation charge with higher gate capacitance. Surprisingly, however, when the gate capacitance is held constant, no mobility enhancement is observed with the high‐k gate dielectrics compared to SiO2. -
Additive patterning of transparent conducting metal oxides at low temperatures is a critical step in realizing low‐cost transparent electronics for display technology and photovoltaics. In this work, inkjet‐printed metal oxide transistors based on pure aqueous chemistries are presented. These inks readily convert to functional thin films at lower processing temperatures (
T ≤ 250 °C) relative to organic solvent‐based oxide inks, facilitating the fabrication of high‐performance transistors with both inkjet‐printed transparent electrodes of aluminum‐doped cadmium oxide (ACO) and semiconductor (InOx ). The intrinsic fluid properties of these water‐based solutions enable the printing of fine features with coffee‐ring free line profiles and smoother line edges than those formed from organic solvent‐based inks. The influence of low‐temperature annealing on the optical, electrical, and crystallographic properties of the ACO electrodes is investigated, as well as the role of aluminum doping in improving these properties. Finally, the all‐aqueous‐printed thin film transistors (TFTs) with inkjet‐patterned semiconductor (InOx ) and source/drain (ACO) layers are characterized, which show ideal low contact resistance (R c< 160 Ω cm) and competitive transistor performance (µ linup to 19 cm2V−1s−1, Subthreshold Slope (SS) ≤150 mV dec−1) with only low‐temperature processing (T ≤ 250 °C). -
Abstract Boron (B) alloying transforms the magnetoelectric antiferromagnet Cr2O3into a multifunctional single‐phase material which enables electric field driven π/2 rotation of the Néel vector. Nonvolatile, voltage‐controlled Néel vector rotation is a much‐desired material property in the context of antiferromagnetic spintronics enabling ultralow power, ultrafast, nonvolatile memory, and logic device applications. Néel vector rotation is detected with the help of heavy metal (Pt) Hall‐bars in proximity of pulsed laser deposited B:Cr2O3films. To facilitate operation of B:Cr2O3‐based devices in CMOS (complementary metal‐oxide semiconductor) environments, the Néel temperature,
T N, of the functional film must be tunable to values significantly above room temperature. Cold neutron depth profiling and X‐ray photoemission spectroscopy depth profiling reveal thermally activated B‐accumulation at the B:Cr2O3/ vacuum interface in thin films deposited on Al2O3substrates. The B‐enrichment is attributed to surface segregation. Magnetotransport data confirm B‐accumulation at the interface within a layer of ≈50 nm thick where the device properties reside. HereT Nenhances from 334 K prior to annealing, to 477 K after annealing for several hours. Scaling analysis determinesT Nas a function of the annealing temperature. Stability of post‐annealing device properties is evident from reproducible Néel vector rotation at 370 K performed over the course of weeks.