We use ALMA observations of CO(2–1) in 13 massive (
The product selectivity of many heterogeneous electrocatalytic processes is profoundly affected by the liquid side of the electrocatalytic interface. The electrocatalytic reduction of CO to hydrocarbons on Cu electrodes is a prototypical example of such a process. However, probing the interactions of surface-bound intermediates with their liquid reaction environment poses a formidable experimental challenge. As a result, the molecular origins of the dependence of the product selectivity on the characteristics of the electrolyte are still poorly understood. Herein, we examined the chemical and electrostatic interactions of surface-adsorbed CO with its liquid reaction environment. Using a series of quaternary alkyl ammonium cations (
- Publication Date:
- NSF-PAR ID:
- 10091785
- Journal Name:
- Proceedings of the National Academy of Sciences
- Page Range or eLocation-ID:
- Article No. 201900761
- ISSN:
- 0027-8424
- Publisher:
- Proceedings of the National Academy of Sciences
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M *≳ 1011M ⊙) poststarburst galaxies atz ∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu momentum, and Evolution ( ) program. Early results showed that two poststarburst galaxies host large H2reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, withM ⊙. Given their high stellar masses, this mass limit corresponds to an average gas fraction of or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with theD n 4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support thismore » -
Assessment of the global budget of the greenhouse gas nitrous oxide (
O) is limited by poor knowledge of the oceanic O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological O emissions from the ocean by training a supervised learning algorithm with over 158,000 O measurements from the surface ocean—the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean O flux of 4.2 ± 1.0 Tg N , 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This O flux ranges from a low of 3.3 ± 1.3 Tg N in the boreal spring to a high of 5.5 ± 2.0 Tg N in the boreal summer. Much of the seasonal variations in global O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systemsmore » -
Abstract We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks loaded with electron-positron pairs. Various external magnetizations
σ ≲ 10−4and pair-loading factorsZ ±≲ 10 are studied, whereZ ±is the number of loaded electrons and positrons per ion. We find the following: (1) The shock becomes mediated by the ion Larmor gyration in the mean field whenσ exceeds a critical valueσ Lthat decreases withZ ±. Atσ ≲σ Lthe shock is mediated by particle scattering in the self-generated microturbulent fields, the strength and scale of which decrease withZ ±, leading to lowerσ L. (2) The energy fraction carried by the post-shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-shock electron scales as . (3) Pair loading suppresses nonthermal ion acceleration at magnetizations as low asσ ≈ 5 × 10−6. The ions then become essentially thermal with mean energy , while electrons form a nonthermal tail, extending from to . Whenσ = 0, particle acceleration is enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock evolution. Here,more » -
Abstract We report the temperature dependence of the Yb valence in the geometrically frustrated compound
from 12 to 300 K using resonant x-ray emission spectroscopy at the Yb transition. We find that the Yb valence,v , is hybridized between thev = 2 andv = 3 valence states, increasing from at 12 K to at 300 K, confirming that is a Kondo system in the intermediate valence regime. This result indicates that the Kondo interaction in is substantial, and is likely to be the reason why does not order magnetically at low temperature, rather than this being an effect of geometric frustration. Furthermore, the zero-point valence of the system is extracted from our data and compared with other Kondo lattice systems. The zero-point valence seems to be weakly dependent on the Kondo temperature scale, but not on the valence change temperature scaleT v . -
Abstract The formation and evolution of post-solitons has been discussed for quite some time both analytically and through the use of particle-in-cell (PIC) codes. It is however only recently that they have been directly observed in laser-plasma experiments. Relativistic electromagnetic (EM) solitons are localised structures that can occur in collisionless plasmas. They consist of a low-frequency EM wave trapped in a low electron number-density cavity surrounded by a shell with a higher electron number-density. Here we describe the results of an experiment in which a 100 TW Ti:sapphire laser (30 fs, 800 nm) irradiates a
TMPTA foam target with a focused intensity . A third harmonic ( nm) probe is employed to diagnose plasma motion for 25 ps after the main pulse interaction via Doppler-Spectroscopy. Both radiation-hydrodynamics and 2D PIC simulations are performed to aid in the interpretation of the experimental results. We show that the rapid motion of the probe critical-surface observed in the experiment might be a signature of post-soliton wall motion.