skip to main content

Title: Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes
The angular size of a star is a critical factor in determining its basic properties. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars’ angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can more » be biased for stars with ambiguous stellar classifications. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1707544 1806554 1806560 1807029 1707551 1707432 1806798
Publication Date:
NSF-PAR ID:
10092178
Journal Name:
Nature Astronomy
ISSN:
2397-3366
Sponsoring Org:
National Science Foundation
More Like this
  1. High angular resolution observations at optical wavelengths provide valuable insights into stellar astrophysics, and enable direct measurements of fundamental stellar parameters and the probing of stellar atmospheres, circumstellar disks, the elongation of rapidly rotating stars and the pulsations of Cepheid variable stars. The angular size of most stars is of the order of one milliarcsecond or less, and to spatially resolve stellar disks and features at this scale requires an optical interferometer using an array of telescopes with baselines on the order of hundreds of metres. We report on the implementation of a stellar intensity interferometry system developed for the four VERITAS imaging atmospheric Cherenkov telescopes. The system was used to measure the angular diameter of the two sub-milliarcsecond stars β Canis Majoris and ϵ Orionis with a precision of greater than 5%. The system uses an offline approach in which starlight intensity fluctuations that are recorded at each telescope are correlated post observation. The technique can be readily scaled onto tens to hundreds of telescopes, providing a capability that has proven technically challenging to the current generation of optical amplitude interferometry observatories. This work demonstrates the feasibility of performing astrophysical measurements using imaging atmospheric Cherenkov telescope arrays as intensitymore »interferometers and shows the promise for integrating an intensity interferometry system within future observatories such as the Cherenkov Telescope Array.« less
  2. Context. The response of imaging atmospheric Cherenkov telescopes to incident γ -ray-initiated showers in the atmosphere changes as the telescopes age due to exposure to light and weather. These aging processes affect the reconstructed energies of the events and γ -ray fluxes. Aims. This work discusses the implementation of signal calibration methods for the Very Energetic Radiation Imaging Telescope Array System (VERITAS) to account for changes in the optical throughput and detector performance over time. Methods. The total throughput of a Cherenkov telescope is the product of camera-dependent factors, such as the photomultiplier tube gains and their quantum efficiencies, and the mirror reflectivity and Winston cone response to incoming radiation. This document summarizes different methods to determine how the camera gains and mirror reflectivity have evolved over time and how we can calibrate this changing throughput in reconstruction pipelines for imaging atmospheric Cherenkov telescopes. The implementation is validated against seven years of observations with the VERITAS telescopes of the Crab Nebula, which is a reference object in very-high-energy astronomy. Results. Regular optical throughput monitoring and the corresponding signal calibrations are found to be critical for the reconstruction of extensive air shower images. The proposed implementation is applied as a correctionmore »to the signals of the photomultiplier tubes in the telescope simulation to produce fine-tuned instrument response functions. This method is shown to be effective for calibrating the acquired γ -ray data and for recovering the correct energy of the events and photon fluxes. At the same time, it keeps the computational effort of generating Monte Carlo simulations for instrument response functions affordably low.« less
  3. Mérand, Antoine ; Sallum, Stephanie ; Sanchez-Bermudez, Joel (Ed.)
    The VERITAS Imaging Air Cherenkov Telescope array (IACT) was augmented in 2019 with high-speed focal plane electronics to create a new Stellar Intensity Interferometry (SII) observational capability (VERITAS-SII, or VSII). VSII operates during bright moon periods, providing high angular resolution observations ( < 1 mas) in the B photometric band using idle telescope time. VSII has already demonstrated the ability to measure the diameters of two B stars at 416 nm (Bet CMa and Eps Ori) with < 5% accuracy using relatively short (5 hours) exposures.1 The VSII instrumentation was recently improved to increase instrumental sensitivity and observational efficiency. This paper describes the upgraded VSII instrumentation and documents the ongoing improvements in VSII sensitivity. The report describes VSII’s progress in extending SII measurements to dimmer magnitude stars and improving the VSII angular diameter measurement resolution to better than 1%.
  4. Sasián, José ; Youngworth, Richard N. (Ed.)
    For the first time in the history of ground-based x-ray astronomy, the on-axis performance of the dual mirror, aspheric, aplanatic Schwarzschild-Couder optical system has been demonstrated in a 9:7-m aperture imaging atmospheric Cherenkov telescope. The novel design of the prototype Schwarzschild-Couder Telescope (pSCT) is motivated by the need of the next-generation Cherenkov Telescope Array (CTA) observatory to have the ability to perform wide (>=8°) field-of-view observations simultaneously with superior imaging of atmospheric cascades (resolution of 0:067 per pixel or better). The pSCT design, if implemented in the CTA installation, has the potential to improve significantly both the x-ray angular resolution and the off-axis sensitivity of the observatory, reaching nearly the theoretical limit of the technique and thereby making a major impact on the CTA observatory sky survey programs, follow-up observations of multi-messenger transients with poorly known initial localization, as well as on the spatially resolved spectroscopic studies of extended x-ray sources. This contribution reports on the initial alignment procedures and point-spread-function results for the challenging segmented aspheric primary and secondary mirrors of the pSCT.
  5. Context. Large spectroscopic surveys of the Milky Way must be calibrated against a sample of benchmark stars to ensure the reliable determination of atmospheric parameters. Aims. Here, we present new fundamental stellar parameters of seven giant and subgiant stars that will serve as benchmark stars for large surveys. The aim is to reach a precision of 1% in the effective temperature. This precision is essential for accurate determinations of the full set of fundamental parameters and abundances for stars observed by the stellar surveys. Methods. We observed HD 121370 ( η Boo), HD 161797 ( μ Her), HD 175955, HD 182736, HD 185351, HD 188512 ( β Aql), and HD 189349, using the high angular resolution optical interferometric instrument PAVO at the CHARA Array. The limb-darkening corrections were determined from 3D model atmospheres based on the STAGGER grid. The T eff were determined directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. We estimated surface gravities from comparisons to Dartmouth stellar evolution model tracks. The spectroscopic observations were collected from the ELODIE and FIES spectrographs. We estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analysis of unblended lines of neutralmore »and singly ionised iron. Results. For six of the seven stars, we measured the value of T eff to better than 1% accuracy. For one star, HD 189349, the uncertainty on T eff is 2%, due to an uncertain bolometric flux. We do not recommend this star as a benchmark until this measurement can be improved. Median uncertainties for all stars in log  g and [Fe/H] are 0.034 dex and 0.07 dex, respectively. Conclusions. This study presents updated fundamental stellar parameters of seven giant and subgiant stars that can be used as a new set of benchmarks. All the fundamental stellar parameters were established on the basis of consistent combinations of interferometric observations, 3D limb-darkening modelling, and spectroscopic analysis. This paper in this series follows our previous papers featuring dwarf stars and stars in the metal-poor range.« less