skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere
Understanding impacts of secondary organic aerosol (SOA) in air requires a molecular-level understanding of particle growth via interactions between gases and particle surfaces. The interactions of three gaseous organic nitrates with selected organic substrates were measured at 296 K using attenuated total reflection Fourier transform infrared spectroscopy. The organic substrates included a long chain alkane (triacontane, TC), a keto-acid (pinonic acid, PA), an amorphous ester oligomer (poly(ethylene adipate) di-hydroxy terminated, PEA), and laboratory-generated SOA from α-pinene ozonolysis. There was no uptake of the organic nitrates on the non-polar TC substrate, but significant uptake occurred on PEA, PA, and α-pinene SOA. Net uptake coefficients ( γ ) at the shortest reaction times accessible in these experiments ranged from 3 × 10 −4 to 9 × 10 −6 and partition coefficients ( K ) from 1 × 10 7 to 9 × 10 4 . Trends in γ did not quantitatively follow trends in K , suggesting that the intermolecular forces involved in gas–surface interactions are not the same as those in the bulk, which is supported by theoretical calculations. Kinetic modeling showed that nitrates diffused throughout the organic films over several minutes, and that the bulk diffusion coefficients evolved as uptake/desorption occurred. A plasticizing effect occurred upon incorporation of the organic nitrates, whereas desorption caused decreases in diffusion coefficients in the upper layers, suggesting a crusting effect. Accurate predictions of particle growth in the atmosphere will require knowledge of uptake coefficients, which are likely to be several orders of magnitude less than one, and of the intermolecular interactions of gases with particle surfaces as well as with the particle bulk.  more » « less
Award ID(s):
1654104 1647386
PAR ID:
10092195
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Processes & Impacts
Volume:
20
Issue:
11
ISSN:
2050-7887
Page Range / eLocation ID:
1593 to 1610
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Secondary organic aerosol (SOA) particles are ubiquitous in air and understanding the mechanism by which they grow is critical for predicting their effects on visibility and climate. The uptake of three organic nitrates into semi-solid SOA particles formed by α-pinene ozonolysis either with or without an OH scavenger was investigated. Four types of experiments are presented here. In Series A, uptake of the selected organic nitrates (2-ethylhexyl nitrate (2EHN); β-hydroxypropyl nitrate (HPN); β-hydroxyhexyl nitrate (HHN)) into impacted SOA particles was interrogated by attenuated total reflectance (ATR)-FTIR. In this case, equilibrium was reached and partition coefficients ( K SOA = [–ONO 2 ] SOA /[–ONO 2 ] air ) were measured to be K 2EHN = (3.2–11) × 10 4 , K HPN = (4.4–5.4) × 10 5 , and K HHN = (4.9–9.0) × 10 6 . In Series B, SOA particles were exposed on-the-fly to gas phase organic nitrates for comparison to Series A, and uptake of organic nitrates was quantified by HR-ToF-AMS analysis, which yielded similar results. In Series C (AMS) and D (ATR-FTIR), each organic nitrate was incorporated into the SOA as the particles formed and grew. The incorporation of the RONO 2 was much larger in Series C and D ( during growth ), exceeding equilibrium values determined in Series A and B ( after growth ). This suggests that enhanced uptake of organic nitrates during SOA formation and growth is due to a kinetically controlled “burying” mechanism, rather than equilibrium partitioning. This has important implications for understanding SOA formation and growth under conditions where the particles are semi-solid, which is central to accurately predicting properties for such SOA. 
    more » « less
  2. The effect of precursor molecular structural features on secondary organic aerosol (SOA) growth was investigated for a number of precursor functional groups. SOA yields were determined for straight chain alkanes, some oxygenated, up to highly functionalized hydrocarbons, the largest being β-caryophyllene. Organic SOA yield was determined by comparing to standard particle size changes with SO 2 in a photolytic flow reactor. SOA formation was initiated with OH radicals from HONO photolysis and continued with NO and NO 2 present at single-digit nmol/mol levels. Seed particles of ∼10 nm diameter grew by condensation of SOA material and growth was monitored with a nanoparticle sizing system. Cyclic compounds dominate as the highest SOA yielding structural feature, followed by C-10 species with double bonds, with linear alkanes and isoprene most ineffective. Carbonyls led to significant increases in growth compared to the alkanes while alcohols, triple-bond compounds, aromatics, and epoxides were only slightly more effective than alkanes at producing SOA. When more than one double bond is present, or a double bond is present with another functional group as seen with 1, 2-epoxydec-9-ene, SOA yield is notably increased. Placement of the double bond is important as well with β-pinene having an SOA yield approximately 5 times that of α-pinene. In our photolytic flow reactor, first-generation oxidation products are presumed to be the primary species contributing to SOA thus the molecular structure of the precursor is determinant. We also conducted proton-transfer mass spectrometry measurements of α-pinene photooxidation and significant signals were observed at masses for multifunctional nitrates and possibly peroxy radicals. The mass spectrometer measurements were also used to estimate a HONO photolysis rate. 
    more » « less
  3. Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield  =  4(+1/−3) %, total ON yield  =  14(+3/−2) %, and SOA yield  ≤  10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography–mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest. 
    more » « less
  4.  
    more » « less
  5. Abstract. Camphene, a dominant monoterpene emitted from both biogenic and pyrogenicsources, has been significantly understudied, particularly in regard tosecondary organic aerosol (SOA) formation. When camphene represents asignificant fraction of emissions, the lack of model parameterizations forcamphene can result in inadequate representation of gas-phase chemistry andunderprediction of SOA formation. In this work, the first mechanistic study of SOA formation from camphene was performed using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). GECKO-A was used to generate gas-phase chemical mechanisms for camphene and two well-studied monoterpenes, α-pinene and limonene, as well as to predict SOAmass formation and composition based on gas/particle partitioning theory. Themodel simulations represented observed trends in published gas-phase reactionpathways and SOA yields well under chamber-relevant photooxidation and darkozonolysis conditions. For photooxidation conditions, 70 % of thesimulated α-pinene oxidation products remained in the gas phasecompared to 50 % for limonene, supporting model predictions andobservations of limonene having higher SOA yields than α-pinene underequivalent conditions. The top 10 simulated particle-phase products in theα-pinene and limonene simulations represented 37 %–50 % ofthe SOA mass formed and 6 %–27 % of the hydrocarbon mass reacted. Tofacilitate comparison of camphene with α-pinene and limonene, modelsimulations were run under idealized atmospheric conditions, wherein thegas-phase oxidant levels were controlled, and peroxy radicals reacted equallywith HO2 and NO. Metrics for comparison included gas-phasereactivity profiles, time-evolution of SOA mass and yields, andphysicochemical property distributions of gas- and particle-phaseproducts. The controlled-reactivity simulations demonstrated that (1)in the early stages of oxidation, camphene is predicted to form very low-volatility products, lower than α-pinene and limonene, which condenseat low mass loadings; and (2) the final simulated SOA yield for camphene(46 %) was relatively high, in between α-pinene (25 %) andlimonene (74 %). A 50 % α-pinene + 50 % limonene mixture was then used as a surrogate to represent SOA formation from camphene; while simulated SOA mass and yield were well represented, the volatility distribution of the particle-phase products was not. To demonstrate the potential importance of including a parameterized representation of SOA formation by camphene in air quality models, SOA mass and yield were predicted for three wildland fire fuels based on measured monoterpene distributions and published SOA parameterizations for α-pinene and limonene. Using the 50/50 surrogate mixture to represent camphene increased predicted SOA mass by 43 %–50 % for black spruce and by 56 %–108 % for Douglas fir. This first detailed modeling study of the gas-phase oxidation of camphene and subsequent SOA formation highlights opportunities for future measurement–model comparisons and lays a foundation for developing chemical mechanisms and SOA parameterizations for camphene that are suitable for air quality modeling. 
    more » « less