skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The mechanism of controlled integration of ZnO nanowires using pulsed-laser-induced chemical deposition
Laser-induced chemical deposition is an economical “grow-in-place” approach to produce functional materials. The lack of precise control over the component density and other properties hinders the development of the method towards an efficient nanomanufacturing technology. In this paper, we provide a mechanism of direct pulsed-laser integration of ZnO nanowire seeding and growth on silicon wafers toward controlled density. Investigation of laser-induced ZnO nucleation directly deposited on a substrate suggested that the coverage percentage of nucleus particles was a function of instantly available area, supplementing the classical nucleation theory for confined area deposition. A processing window was found in which ZnO nanowires only grew from the early deposited nucleated particles as seeds. A study on ZnO nanowire growth showed that the process became transport limited over time, which was important for density-controlled nanowire growth integrated on nucleated seeds. The proposed mechanism provided guidance to integrate nanomaterials using laser-induced chemical deposition with a controlled density and morphology.  more » « less
Award ID(s):
1663214
PAR ID:
10092249
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
6
ISSN:
2040-3364
Page Range / eLocation ID:
2617 to 2623
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Core–shell Ge/GeSn nanowires provide a route to dislocation-free single crystal germanium-tin alloys with desirable light emission properties because the Ge core acts as an elastically compliant substrate during misfitting GeSn shell growth. However, the uniformity of tin incorporation during reduced pressure chemical vapor deposition may be limited by the kinetics of mass transfer to the shell during GeSn growth. The balance between Sn precursor flux and available surfaces for GeSn nucleation and growth determines whether defects are formed and their type. On the one hand, when the Sn precursor delivery is insufficient, local variations in Sn arrival rate at the nanowire surfaces during GeSn growth produce asymmetries in shell growth that induce wire bending. This inhomogeneous elastic dilatation due to the varying composition occurs via deposition of Sn-poor regions on some of the {112} sidewall facets of the nanowires. On the other hand, when the available nanowire surface area is insufficient to accommodate the arriving Sn precursor flux, Sn-rich precipitate formation results. Between these two extremes, there exists a regime of growth conditions and nanowire densities that permits defect-free GeSn shell growth. 
    more » « less
  2. TiO 2 has been extensively studied in many fields including photocatalysis, electrochemistry, optics, etc. Understanding the mechanism of the anatase–rutile phase transition (ART) process is critical for the design of TiO 2 -based high-activity photocatalysts and tuning its properties for other applications. In this work, the ART process using individual anatase micro-particles with a large percentage of (001) facets was monitored and studied. Phase concentration evolution obtained via Raman microscopy was correlated with the morphological evolution observed in scanning electron microscope (SEM) images. The ART of anatase microcrystals is dominated by surface nucleation and growth, but the ART processes of individual anatase particles are distinctive and depend on the various rutile nucleation sites. Two types of transformation pathways are observed. In one type of ART pathway, the rutile phase nucleated at a corner of an anatase microcrystal and grew in one direction along the edge of the crystal firstly followed by propagation over the rest of the microcrystal in the orthogonal direction on the surface and to the bulk of the crystal. The kinetics of the ART follows the first-order model with two distinct rate constants. The fast reaction rate is from the surface nucleation and growth, and the slow rate is from the bulk nucleation and growth. In the other type of ART pathway, multiple rutile nucleation sites formed simultaneously on different edges and corners of the microcrystal. The rutile phase spread over the whole crystal from these nucleation sites with a small contribution of bulk nucleation. Our study on the ART of individual micro-sized crystals bridges the material gap between bulk crystals and nano-sized TiO 2 particles. The anatase/rutile co-existing particle will provide a perfect platform to study the synergistic effect between the anatase phase and the rutile phase in their catalytic performances. 
    more » « less
  3. We provide insights pertaining the dependence of undercooling in the formation of graphite, nanodiamonds, and Q-carbon nanocomposites by nanosecond laser melting of diamond-like carbon (DLC). The DLC films are melted rapidly in a super-undercooled state and subsequently quenched to room temperature. Substrates exhibiting different thermal properties—silicon and sapphire, are used to demonstrate that substrates with lower thermal conductivity trap heat flow, inducing larger undercooling, both experimentally and theoretically via finite element simulations. The increased undercooling facilitates the formation of Q-carbon. The Q-carbon is used as nucleation seeds for diamond growth via laser remelting and hot-filament chemical vapor deposition. 
    more » « less
  4. Abstract. New particle formation (NPF) consists of two steps: nucleation andsubsequent growth. At present, chemical and physical mechanisms that governthese two processes are not well understood. Here, we report initial resultsobtained from the TANGENT (Tandem Aerosol Nucleation and Growth EnvironmentTube) experiments. The TANGENT apparatus enables us to study these twoprocesses independently. The present study focuses on the effects oftemperature on sulfuric acid nucleation and further growth. Our results showthat lower temperatures enhance both the nucleation and growth rate.However, under temperatures below 268 K the effects of temperature on thenucleation rate become less significant and the nucleation rate becomes lessdependent on relative humidity, indicating that particle formation in the conditions of ourflow tube takes place via barrierless nucleation at lower temperatures. Wealso examined the growth of newly formed particles under differingtemperature conditions for nucleation and further growth. Our results showthat newly nucleated clusters formed at low temperatures can indeed surviveevaporation and grow in a warmer environment in the presence of SO2 andozone and potentially other contaminant vapors. These results implythat some heterogeneous reactions involving nanoparticles affect nucleationand growth of newly formed particles. 
    more » « less
  5. We investigate the time evolution of ZnO thin film growth in oxygen plasma-enhanced atomic layer deposition using in situ spectroscopic ellipsometry. The recently proposed dynamic-dual-box-model approach [Kilic et al., Sci. Rep. 10, 10392 (2020)] is used to analyze the spectroscopic data post-growth. With the help of this model, we explore the in-cycle surface modifications and reveal the repetitive layer-by-layer growth and surface roughness modification mechanisms during the ZnO ultrathin film deposition. The in situ complex-valued dielectric function of the amorphous ZnO thin film is also determined from the model analysis for photon energies of 1.7–4 eV. The dielectric function is analyzed using a critical point model approach providing parameters for bandgap energy, amplitude, and broadening in addition to the index of refraction and extinction coefficient. The dynamic-dual-box-model analysis reveals the initial nucleation phase where the surface roughness changes due to nucleation and island growth prior to film coalescence, which then lead to the surface conformal layer-by-layer growth with constant surface roughness. The thickness evolution is resolved with Angstrom-scale resolution vs time. We propose this method for fast development of growth recipes from real-time in situ data analysis. We also present and discuss results from x-ray diffraction, x-ray photoelectron spectroscopy, and atomic force microscopy to examine crystallographic, chemical, and morphological characteristics of the ZnO film. 
    more » « less