- Award ID(s):
- 1751479
- PAR ID:
- 10092251
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 4
- Issue:
- 10
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaat8597
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Defects in liquid crystals serve as templates for nanoparticle (NP) organization; however, NP assembly in cholesteric (Ch) liquid crystals is only beginning to emerge. We show interactive morphogenesis of NP assemblies and a Ch liquid crystalline host formed by cellulose nanocrystals (CNCs), in which both the host and the guest experience marked changes in shape and structure as a function of concentration. At low NP loading, Ch-CNC droplets exhibit flat-ellipsoidal packing of Ch pseudolayers, while the NPs form a toroidal ring- or two cone–shaped assemblies at droplet poles. Increase in NP loading triggers reversible droplet transformation to gain a core-shell morphology with an isotropic core and a Ch shell, with NPs partitioning in the core and in disclinations. We show programmable assembly of droplets carrying magnetic NPs. This work offers a strategy for NP organization in Ch liquid crystals, thus broadening the spectrum of architectures of soft nanostructured materials.more » « less
-
Achieving reversible and tunable assembly of silica nanoparticles at liquid–liquid interfaces is vital for a wide range of scientific and technological applications including sustainable subsurface energy applications, catalysis, drug delivery and material synthesis. In this study, we report the mechanisms controlling the assembly of silica nanoparticles (dia. 50 nm and 100 nm) at water–heptane and water–toluene interfaces using sodium dodecyl sulfate (SDS) surfactant with concentrations ranging from 0.001–0.1 wt% using operando ultrasmall/small-angle X-ray scattering, cryogenic scanning electron microscopy imaging and classical molecular dynamics simulations. The results show that the assembly of silica nanoparticles at water–hydrocarbon interfaces can be tuned by controlling the concentrations of SDS. Silica nanoparticles are found to: (a) dominate the interfaces in the absence of interfacial SDS molecules, (b) coexist with SDS at the interfaces at low surfactant concentration of 0.001 wt% and (c) migrate toward the aqueous phase at a high SDS concentration of 0.1 wt%. Energetic analyses suggest that the van der Waals and electrostatic interactions between silica nanoparticles and SDS surfactants increase with SDS concentration. However, the favorable van der Waals and electrostatic interactions between the silica nanoparticles and toluene or heptane decrease with increasing SDS concentration. As a result, the silica nanoparticles migrate away from the water–hydrocarbon interface and towards bulk water at higher SDS concentrations. These calibrated investigations reveal the mechanistic basis for tuning silica nanoparticle assembly at complex interfaces.more » « less
-
Abstract Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.
-
Self-assembly of colloidal particles due to elastic interactions in nematic liquid crystals promises tunable composite materials and can be guided by exploiting surface functionalization, geometric shape and topology, though these means of controlling self-assembly remain limited. Here, we realize low-symmetry achiral and chiral elastic colloids in the nematic liquid crystals using colloidal polygonal concave and convex prisms. We show that the controlled pinning of disclinations at the prism edges alters the symmetry of director distortions around the prisms and their orientation with respect to the far-field director. The controlled localization of the disclinations at the prism's edges significantly influences the anisotropy of the diffusion properties of prisms dispersed in liquid crystals and allows one to modify their self-assembly. We show that elastic interactions between polygonal prisms can be switched between repulsive and attractive just by controlled re-pinning the disclinations at different edges using laser tweezers. Our findings demonstrate that elastic interactions between colloidal particles dispersed in nematic liquid crystals are sensitive to the topologically equivalent but geometrically rich controlled configurations of the particle-induced defects.more » « less
-
Abstract The large‐scale fabrication of two‐dimensional periodic nanostructures in high quality holds great promises for building novel nanoscale devices. They have been conventionally produced using interface‐mediated self‐assembly strategies such as the Langmuir‐Blodgett and oil‐water interfacial assembly methods, which however are limited by the stringent requirements for the hydrophilicity/hydrophobicity of the particle surface. In this article, we review the recent progress on the air‐liquid interfacial self‐assembly to demonstrate that such strategies are simple, inexpensive, effective, scalable, and versatile in the fabrication of two‐dimensional periodic nanostructured arrays. They can be successfully employed to assemble nanoparticles of various compositions and surface properties into periodic nanostructured monolayer films, which find many important applications, for example, in the construction of colorimetric sensors for gas, chemical, and biomedical detection.