skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shaping nanoparticle fingerprints at the interface of cholesteric droplets
The ordering of nanoparticles into predetermined configurations is of importance to the design of advanced technologies. Here, we balance the interfacial energy of nanoparticles against the elastic energy of cholesteric liquid crystals to dynamically shape nanoparticle assemblies at a fluid interface. By adjusting the concentration of surfactant that plays the dual role of tuning the degree of nanoparticle hydrophobicity and altering the molecular anchoring of liquid crystals, we pattern nanoparticles at the interface of cholesteric liquid crystal emulsions. In this system, interfacial assembly is tempered by elastic patterns that arise from the geometric frustration of confined cholesterics. Patterns are tunable by varying both surfactant and chiral dopant concentrations. Adjusting the particle hydrophobicity more finely by regulating the surfactant concentration and solution pH further modifies the rigidity of assemblies, giving rise to surprising assembly dynamics dictated by the underlying elasticity of the cholesteric. Because particle assembly occurs at the interface with the desired structures exposed to the surrounding water solution, we demonstrate that particles can be readily cross-linked and manipulated, forming structures that retain their shape under external perturbations. This study serves as a foundation for better understanding inter-nanoparticle interactions at interfaces by tempering their assembly with elasticity and for creating materials with chemical heterogeneity and linear, periodic structures, essential for optical and energy applications.  more » « less
Award ID(s):
1751479
PAR ID:
10092251
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
4
Issue:
10
ISSN:
2375-2548
Page Range / eLocation ID:
eaat8597
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Defects in liquid crystals serve as templates for nanoparticle (NP) organization; however, NP assembly in cholesteric (Ch) liquid crystals is only beginning to emerge. We show interactive morphogenesis of NP assemblies and a Ch liquid crystalline host formed by cellulose nanocrystals (CNCs), in which both the host and the guest experience marked changes in shape and structure as a function of concentration. At low NP loading, Ch-CNC droplets exhibit flat-ellipsoidal packing of Ch pseudolayers, while the NPs form a toroidal ring- or two cone–shaped assemblies at droplet poles. Increase in NP loading triggers reversible droplet transformation to gain a core-shell morphology with an isotropic core and a Ch shell, with NPs partitioning in the core and in disclinations. We show programmable assembly of droplets carrying magnetic NPs. This work offers a strategy for NP organization in Ch liquid crystals, thus broadening the spectrum of architectures of soft nanostructured materials. 
    more » « less
  2. Achieving reversible and tunable assembly of silica nanoparticles at liquid–liquid interfaces is vital for a wide range of scientific and technological applications including sustainable subsurface energy applications, catalysis, drug delivery and material synthesis. In this study, we report the mechanisms controlling the assembly of silica nanoparticles (dia. 50 nm and 100 nm) at water–heptane and water–toluene interfaces using sodium dodecyl sulfate (SDS) surfactant with concentrations ranging from 0.001–0.1 wt% using operando ultrasmall/small-angle X-ray scattering, cryogenic scanning electron microscopy imaging and classical molecular dynamics simulations. The results show that the assembly of silica nanoparticles at water–hydrocarbon interfaces can be tuned by controlling the concentrations of SDS. Silica nanoparticles are found to: (a) dominate the interfaces in the absence of interfacial SDS molecules, (b) coexist with SDS at the interfaces at low surfactant concentration of 0.001 wt% and (c) migrate toward the aqueous phase at a high SDS concentration of 0.1 wt%. Energetic analyses suggest that the van der Waals and electrostatic interactions between silica nanoparticles and SDS surfactants increase with SDS concentration. However, the favorable van der Waals and electrostatic interactions between the silica nanoparticles and toluene or heptane decrease with increasing SDS concentration. As a result, the silica nanoparticles migrate away from the water–hydrocarbon interface and towards bulk water at higher SDS concentrations. These calibrated investigations reveal the mechanistic basis for tuning silica nanoparticle assembly at complex interfaces. 
    more » « less
  3. Abstract Identifying and removing microplastics (MPs) from the environment is a global challenge. This study explores how the colloidal fraction of MPs assemble into distinct 2D patterns at aqueous interfaces of liquid crystal (LC) films with the goal of developing surface‐sensitive methods for identifying MPs. Polyethylene (PE) and polystyrene (PS) microparticles are measured to exhibit distinct aggregation patterns, with addition of anionic surfactant amplifying differences in PS/PE aggregation patterns: PS changes from a linear chain‐like morphology to a singly dispersed state with increasing surfactant concentration whereas PE forms dense clusters at all surfactant concentrations. Statistical analysis of assembly patterns using deep learning image recognition models yields accurate classification, with feature importance analysis confirming that dense, multibranched assemblies are unique features of PE relative to PS. Microscopic characterization of LC ordering at the microparticle surfaces leads to predict LC‐mediated interactions (due to elastic strain) with a dipolar symmetry, a prediction consistent with the interfacial organization of PS but not PE. Further analysis leads to conclude that PE microparticles, due to their polycrystalline nature, possess rough surfaces that lead to weak LC elastic interactions and enhanced capillary forces. Overall, the results highlight the potential utility of LC interfaces for rapid identification of colloidal MPs based on their surface properties. 
    more » « less
  4. Abstract Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals. 
    more » « less
  5. Abstract The large‐scale fabrication of two‐dimensional periodic nanostructures in high quality holds great promises for building novel nanoscale devices. They have been conventionally produced using interface‐mediated self‐assembly strategies such as the Langmuir‐Blodgett and oil‐water interfacial assembly methods, which however are limited by the stringent requirements for the hydrophilicity/hydrophobicity of the particle surface. In this article, we review the recent progress on the air‐liquid interfacial self‐assembly to demonstrate that such strategies are simple, inexpensive, effective, scalable, and versatile in the fabrication of two‐dimensional periodic nanostructured arrays. They can be successfully employed to assemble nanoparticles of various compositions and surface properties into periodic nanostructured monolayer films, which find many important applications, for example, in the construction of colorimetric sensors for gas, chemical, and biomedical detection. 
    more » « less