skip to main content


Title: The serendipitous discovery of a readily available redox-bistable molecule derived from cyclic(alkyl)(amino)carbenes
Bis(azoliums) are readily available in one step from cyclic (alkyl)(amino)carbenes and bis(acyl chlorides). A two-electron reduction of the bis(azolium), featuring a gem -(dimethyl)malonoyl spacer, leads to the corresponding transient diradical, which undergoes an intramolecular cyclization. The latter can be re-oxidized at a higher potential to yield back the bis(azolium). The redox bistability of this simple organic molecular system is linked to the formation of a weak C–O bond (27 kcal mol −1 ). Both redox forms can be isolated and stored for months without evidence of decay.  more » « less
Award ID(s):
1661518
NSF-PAR ID:
10092296
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Organic Chemistry Frontiers
Volume:
5
Issue:
13
ISSN:
2052-4129
Page Range / eLocation ID:
2073 to 2078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Half‐sandwich rhodium monohydrides are often proposed as intermediates in catalysis, but little is known regarding the redox‐induced reactivity accessible to these species. Herein, the bis(diphenylphosphino)ferrocene (dppf) ligand has been used to explore the reactivity that can be induced when a [Cp*Rh] monohydride undergoes remote (dppf‐centered) oxidation by 1e. Chemical and electrochemical studies show that one‐electron redox chemistry is accessible to Cp*Rh(dppf), including a unique quasi‐reversible RhII/Iprocess at −0.96 V vs. ferrocenium/ferrocene (Fc+/0). This redox manifold was confirmed by isolation of an uncommon RhIIspecies, [Cp*Rh(dppf)]+, that was characterized by electron paramagnetic resonance (EPR) spectroscopy. Protonation of Cp*Rh(dppf) with anilinium triflate yielded an isolable and inert monohydride, [Cp*Rh(dppf)H]+, and this species was found to undergo a quasireversible electrochemical oxidation at +0.41 V vs. Fc+/0that corresponds to iron‐centered oxidation in the dppf backbone. Thermochemical analysis predicts that this dppf‐centered oxidation drives a dramatic increase in acidity of the Rh−H moiety by 23 pKaunits, a reactivity pattern confirmed by in situ1H NMR studies. Taken together, these results show that remote oxidation can effectively induce M−H activation and suggest that ligand‐centered redox activity could be an attractive feature for the design of new systems relying on hydride intermediates.

     
    more » « less
  2. Abstract

    Increasing redox‐active species concentrations can improve viability for organic redox flow batteries by enabling higher energy densities, but the required concentrated solutions can become viscous and less conductive, leading to inefficient electrochemical cycling and low material utilization at higher current densities. To better understand these tradeoffs in a model system, we study a highly soluble and stable redox‐active couple,N‐(2‐(2‐methoxyethoxy)ethyl)phenothiazine (MEEPT), and its bis(trifluoromethanesulfonyl)imide radical cation salt (MEEPT‐TFSI). We measure the physicochemical properties of electrolytes containing 0.2–1 M active species and connect these to symmetric cell cycling behavior, achieving robust cycling performance. Specifically, for a 1 M electrolyte concentration, we demonstrate 94% materials utilization, 89% capacity retention, and 99.8% average coulombic efficiency over 435 h (100 full cycles). This demonstration helps to establish potential for high‐performing, concentrated nonaqueous electrolytes and highlights possible failure modes in such systems.

     
    more » « less
  3. Abstract

    A novel iron‐based posolyte redox species are presented for an aqueous redox flow battery, (Tetrakis(2‐pyridylmethyl)ethylenediamine)iron(II) dichloride, which is obtained by a simple synthetic route, shows a high redox potential of 0.788 V versus SHE, and exhibits exceptional aqueous solubility of 1.46 M. Paired with bis(3‐trimethylammonio)propyl viologen tetrachloride at neutral pH, the battery demonstrates an open‐circuit voltage of 1.19 V and delivers good cycling performance, with a capacity fade rate of 0.28% per day and coulombic efficiency of 99.3%. Postmortem chemical and electrochemical analyses of the posolyte species suggest future routes for stabilization of the complex. Among all the iron complexes with a redox potential above 0.4 V versus SHE, this compound exhibits the highest solubility. These results offer valuable insights that can be applied to the development of future posolyte species for sustainable energy storage solutions.

     
    more » « less
  4. This paper describes the identification of specific host–guest interactions between basic gases (NH3, CD3CN, and pyridine) and four topologically similar 2-dimensional (2D) metal–organic frameworks (MOFs) comprising copper and nickel bis(diimine) and bis(dioxolene) linkages of triphenylene-based ligands using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance spectroscopy (EPR), and powder X-ray diffraction (PXRD). This contribution demonstrates that synthetic bottom-up control over surface chemistry of layered MOFs can be used to impart Lewis acidity or a mixture of Brønsted and Lewis acidities, through the choice of organic ligand and metal cation. This work also distinguishes differences in redox activity within this class of MOFs that contribute to their ability to promote electronic transduction of intermolecular interactions. Future design of structure–function relationships within multifunctional 2D MOFs will benefit from the insights this work provides. 
    more » « less
  5. Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrochemical reduction of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels. Next, I will present electrocatalytic conversion of HMF to two biobased monomers in an H-type electrochemical cell [5]. HMF reduction (hydrogenation) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved under mild electrolyte conditions and ambient temperature using a Ag/C cathode. Meanwhile, HMF oxidation to 2,5-furandicarboxylic acid (FDCA) with ~100% efficiency was facilitated under the same conditions by a homogeneous nitroxyl radical redox mediator, together with an inexpensive carbon felt anode. The selectivity and efficiency for Ag-catalyzed BHMF formation were sensitive to cathode potential, owing to competition from HMF hydrodimerization reactions and water reduction (hydrogen evolution). Moreover, the carbon support of Ag/C was active for HMF reduction and contributed to undesired dimer/oligomer formation at strongly cathodic potentials. As a result, high BHMF selectivity and efficiency were only achieved within a narrow potential range near –1.3 V. Fortunately, the selectivity of redox-mediated HMF oxidation was insensitive to anode potential, thus allowing HMF hydrogenation and oxidation half reactions to be performed together in a single cathode-potential-controlled cell. Electrocatalytic HMF conversion in a paired cell achieved high molar yields of BHMF and FDCA, and nearly doubled electron efficiency compared to the unpaired cell. Finally, I will briefly introduce our recent work on the development of a three-electrode flow cell with an oxide-derived Ag (OD-Ag) cathode and catbon felt anode for paring elecatalytic oxidation and reduction of HMF. The flow cell has a remarkable cell voltage reduction from ~7.5 V to ~2.0 V by transferring the electrolysis from the H-type cell to the flow cell [6]. This represents a more than fourfold increase in the energy efficiency at the 10 mA operation. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA operation. These paired processes have shown potential for integrating renewable electricity and carbon for distributed chemical manufacturing in the future. 
    more » « less