skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing the collaboration networks and productivity of China-born and US-born academic scientists
Award ID(s):
1661206
PAR ID:
10092321
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Science and Public Policy
Volume:
46
Issue:
2
ISSN:
0302-3427
Page Range / eLocation ID:
310 to 320
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider the Born and inverse Born series for scalar waves with a cubic nonlinearity of Kerr type. We find a recursive formula for the operators in the Born series and prove their boundedness. This result gives conditions which guarantee convergence of the Born series, and subsequently yields conditions which guarantee convergence of the inverse Born series. We also use fixed point theory to give alternate explicit conditions for convergence of the Born series. We illustrate our results with numerical experiments. 
    more » « less
  2. We present a survey of recent results on the inverse Born series. The convergence and stability of the method are characterized in Banach spaces. Applications to inverse problems in various physical settings are described. 
    more » « less
  3. null (Ed.)
    Abstract We combine infrared absorption and Raman scattering spectroscopies to explore the properties of the heavy transition metal dichalcogenide 1T-HfS 2 . We employ the LO–TO splitting of the E u vibrational mode along with a reevaluation of mode mass, unit cell volume, and dielectric constant to reveal the Born effective charge. We find $${Z}_{{\rm{B}}}^{* }$$ Z B *  = 5.3 e , in excellent agreement with complementary first-principles calculations. In addition to resolving the controversy over the nature of chemical bonding in this system, we decompose Born charge into polarizability and local charge. We find α  = 5.07 Å 3 and Z *  = 5.2 e , respectively. Polar displacement-induced charge transfer from sulfur p to hafnium d is responsible for the enhanced Born charge compared to the nominal 4+ in hafnium. 1T-HfS 2 is thus an ionic crystal with strong and dynamic covalent effects. Taken together, our work places the vibrational properties of 1T-HfS 2 on a firm foundation and opens the door to understanding the properties of tubes and sheets. 
    more » « less