skip to main content


Title: Things are not always as they seem: High-resolution X-ray CT scanning reveals the first resin-embedded miniature gecko of the genus Ebenavia
We identify a presumed specimen of Sphaerodactylus in amber from the Zoological Research Museum Alexander Koenig as being embedded in copal, rather than amber. Further, the specimen matches the morphology not of a Hispaniolan gecko, but of the extant Madagascan species Ebenavia boettgeri, which occurs in a known area of copal deposits.  more » « less
Award ID(s):
1657656
NSF-PAR ID:
10092693
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Bonn zoological bulletin
Volume:
67
Issue:
2
ISSN:
2363-6947
Page Range / eLocation ID:
71–77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the discovery of a new genus and species of amber-preserved lizard from the mid-Cretaceous of Myanmar. The fossil is one of the smallest and most complete Cretaceous lizards ever found, preserving both the articulated skeleton and remains of the muscular system and other soft tissues. Despite its completeness, its state of preservation obscures important diagnostic features.We determined its taxonomic allocation using two approaches: we used previously identified autapomorphies of squamates that were observable in the fossil; and we included the fossil in a large squamate morphological data set. The apomorphy-based identification of this specimen, including comparative data on trunk elongation in squamates, suggests its allocation to the stem-group Anguimorpha. Results from the phylogenetic analysis places the fossil in one of four positions: as sister taxon of either Shinisaurus crocodilurus or Parasaniwa wyomingensis, at the root of Varanoidea, or in a polytomy with Varanoidea and a fossorial group retrieved in a previous assessment of squamate relationships. It is clear that this fossil has many similarities with anguimorph squamates and, if this taxonomic allocation is correct, this fossil would represent the first amber-preserved member of stem Anguimorpha ever recorded, and the smallest known member of that group. It further emphasizes the role of amber inclusions in expanding our understanding of the diversity of Cretaceous lizard communities. 
    more » « less
  2. Ricinulei Thorell, 1876 is an order of Arachnida currently represented in the New and Old Worlds by 103 living species. The order is also represented in the fossil record from the Carboniferous (ca. 305–319 Ma) and the Cretaceous (ca. 99 Ma) periods. In the present contribution, Hirsutisoma grimaldii sp. nov., a new extinct species of the suborder Primoricinulei Wunderlich, 2015, is described from a specimen preserved in Cretaceous Burmese amber. The specimen is a well-preserved adult male in which several taxonomically informative structures are visible, allowing the new species to be differentiated from Hirsutisoma bruckschi Wunderlich, 2017, the only other congener for which a male is known. This description raises the number of Cretaceous Ricinulei species to six. A comparative table documents morphological differences among the various species of this lineage. Hypotheses concerning the paleoecology and functional morphology of this species and, by extrapolation, other primoricinuleids, are presented. The evidence suggests that Primoricinulei were corticolous, scansorial predators. 
    more » « less
  3. Abstract

    Genetically encoded reporters have greatly increased our understanding of biology. While fluorescent reporters have been widely used, photostability and phototoxicity have hindered their use in long‐term experiments. Bioluminescence overcomes some of these challenges but requires the addition of an exogenous luciferin limiting its use. Using a modular approach, Autonomous Molecular BioluminEscent Reporter (AMBER), an indicator of membrane potential is engineered. Unlike other bioluminescent systems, AMBER is a voltage‐gated luciferase coupling the functionalities of the Ciona voltage‐sensing domain (VSD) and bacterial luciferase, luxAB. When co‐expressed with the luciferin‐producing genes, AMBER reversibly switches the bioluminescent intensity as a function of membrane potential. Using biophysical and biochemical methods, it is shown that AMBER switches its enzymatic activity from an OFF to an ON state as a function of the membrane potential. Upon depolarization, AMBER switches from a low to a high enzymatic activity state, showing a several‐fold increase in the bioluminescence output (ΔL/L). AMBER in the pharyngeal muscles and mechanosensory touch neurons ofCaenorhabditis elegansis expressed. Using the compressed sensing approach, the electropharingeogram of theC. eleganspharynx is reconstructed, validating the sensor in vivo. Thus, AMBER represents the first fully genetically encoded bioluminescent reporter without requiring exogenous luciferin addition.

     
    more » « less
  4. Amber is a system-on-chip (SoC) with a coarse-grained reconfigurable array (CGRA) for acceleration of dense linear algebra applications, such as machine learning (ML), image processing, and computer vision. It is designed using an agile accelerator-compiler co-design flow; the compiler updates automatically with hardware changes, enabling continuous application-level evaluation of the hardware-software system. To increase hardware utilization and minimize reconfigurability overhead, Amber features the following: 1) dynamic partial reconfiguration (DPR) of the CGRA for higher resource utilization by allowing fast switching between applications and partitioning resources between simultaneous applications; 2) streaming memory controllers supporting affine access patterns for efficient mapping of dense linear algebra; and 3) low-overhead transcendental and complex arithmetic operations. The physical design of Amber features a unique clock distribution method and timing methodology to efficiently layout its hierarchical and tile-based design. Amber achieves a peak energy efficiency of 538 INT16 GOPS/W and 483 BFloat16 GFLOPS/W. Compared with a CPU, a GPU, and a field-programmable gate array (FPGA), Amber has up to 3902x, 152x, and 107x better energy-delay product (EDP), respectively. 
    more » « less
  5. Molecular dynamics (MD) is a powerful tool for studying intrinsically disordered proteins, however, its reliability depends on the accuracy of the force field. We assess Amber ff19SB, Amber ff14SB, OPLS-AA/M, and CHARMM36m with respect to their capacity to capture intrinsic conformational dynamics of 14 guest residues x (=G, A, L, V, I, F, Y, D P , E P , R, C, N, S, T) in GxG peptides in water. The MD-derived Ramachandran distribution of each guest residue is used to calculate 5 J-coupling constants and amide I′ band profiles to facilitate a comparison to spectroscopic data through reduced χ 2 functions. We show that the Gaussian model, optimized to best fit the experimental data, outperforms all MD force fields by an order of magnitude. The weaknesses of the MD force fields are: (i) insufficient variability of the polyproline II (pPII) population among the guest residues; (ii) oversampling of antiparallel at the expense of transitional β-strand region; (iii) inadequate sampling of turn-forming conformations for ionizable and polar residues; and (iv) insufficient guest residue-specificity of the Ramachandran distributions. Whereas Amber ff19SB performs worse than the other three force fields with respect to χ 2 values, it accounts for residue-specific pPII content better than the other three force fields. Additional testing of residue-specific RSFF1 and Amber ff14SB combined with TIP4P/2005 on six guest residues x (=A, I, F, D P , R, S) reveals that residue specificity derived from protein coil libraries or an improved water model alone do not result in significantly lower χ 2 values. 
    more » « less