In this paper, an integral sliding mode current controller (SMC) is proposed for mutually coupled switched reluctance motors (MCSRM) using asymmetric bridge converters aiming to achieve constant switching frequency and lower sampling rate. A generalized state-space model is built and then the design of a sliding mode controller along with the stability analysis of the closed-loop system are presented. The effectiveness of SMC is verified using simulation studies with a three-phase, sinusoidal excitation 12/8 MCSRM over a wide speed range. Compared to the hysteresis current control, the proposed SMC based design approach demonstrates a comparable response in terms of currents ripples, the root-mean-square error of current and torque while achieving a constant switching frequency and lower sampling rate.
more »
« less
A fixed-switching-frequency Sliding Mode Current Controller for Mutually Coupled Switched Reluctance Machines using Asymmetric Bridge Converter
In this paper, an integral sliding mode current controller (SMC) is proposed for mutually coupled switched reluctance motors (MCSRM) using asymmetric bridge converters aiming to achieve constant switching frequency and lower sampling rate. A generalized state-space model is built and then the design of a sliding mode controller along with the stability analysis of the closed-loop system are presented. The effectiveness of SMC is verified using simulation studies with a three-phase, sinusoidal excitation 12/8 MCSRM over a wide speed range. Compared to the hysteresis current control, the proposed SMC-based design approach demonstrates a comparable response in terms of currents ripples, the root-mean-square error of current and torque while achieving a constant switching frequency and lower sampling rate.
more »
« less
- Award ID(s):
- 1851875
- PAR ID:
- 10092828
- Date Published:
- Journal Name:
- IEEE Transportation Electrification Conference and Expo
- ISSN:
- 2377-5483
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, a sliding mode current controller (SMC) is proposed for mutually coupled switched reluctance machines (MCSRMs) using a three-phase voltage source converter (VSC). A generalized state-space model of MCSRMs is first presented using a three-phase voltage source converter. Asymmetric bridge converters and three-phase voltage source converter are compared in terms of switching frequency. A sliding mode current controller is then designed to achieve constant switching frequency and lower sampling rate using a three-phase VSC. The stability analysis of the sliding controller is given to ensure the stability of the controller. Finally, the effectiveness of SMC is verified through simulation studies with a three-phase, sinusoidal excitation 12/8 MCSRM over a wide speed range. Compared to the hysteresis current control, SMC demonstrates a comparable performance in terms of torque ripples, torque root-mean-square tracking errors (RMSE) and current RMSE while achieving a constant switching frequency and much lower sampling rate.more » « less
-
As technology advances and cities become more innovative, the need to harvest energy to power intelligent devices at remote locations, such as wireless sensors, is increasing. This paper focuses on studying and simulating an energy management system (EMS) for energy harvesting with a battery and a supercapacitor for low power applications. Lithium-ion batteries are the primary energy storage source for low power applications due to their high energy density and efficiency. On the other hand, the supercapacitors excel in fast charge and discharge. Furthermore, supercapacitors tolerate high currents due to their low equivalent series resistance (ESR). The supercapacitor in the system increases the time response of the power delivery to the load, and it also absorbs the high currents in the system. Moreover, the supercapacitor covers short-time load demand due to the fluctuation of the renewable source. The EMS monitors the proposed system to maintain power to the load either from the renewable source or the energy storage. The power flow of the energy storage is controlled via DC-DC bidirectional converters. The lithium-ion battery is charged via a constant current (CC) using a sliding mode controller (SMC) and a constant voltage (CV) via a typical PI controller. The response of the SMC current controller is compared with PI and Fuzzy current controller. Furthermore, the performance of a system having and not having a supercapacitor is compared. Finally, MATLAB modeling system simulation and experimental implementation results are analyzed and presented.more » « less
-
In this study, a sliding mode control (SMC) scheme is proposed for the single-phase cascaded H-bridge (CHB) multilevel active front end (AFE) rectifier with LCL filter. A PI controller is employed to control the DC voltage of the rectifier modules and to obtain the amplitude for the reference grid current. The SMC based current control scheme uses the grid current and filter capacitor voltage feedbacks. The resonance of the LCL filter is damped using the voltage feedback of the capacitor. Therefore, the requirement for additional damping circuitry is removed. Simulation and experimental results are presented to verify the performance of the SMC for the CHB multilevel AFE rectifier. The overall proposed control scheme provides almost unity power factor and fast transient response. It is seen from the results that the current drawn from the grid is in sinusoidal waveform with low THD.more » « less
-
Soft robots have shown great potential to enable safe interactions with unknown environments due to their inherent compliance and variable stiffness. However, without knowledge of potential contacts, a soft robot could exhibit rigid behaviors in a goal-reaching task and collide into obstacles. In this paper, we introduce a Sliding Mode Augmented by Reactive Transitioning (SMART) controller to detect the contact events, adjust the robot’s desired trajectory, and reject estimated disturbances in a goal reaching task. We employ a sliding mode controller to track the desired trajectory with a nonlinear disturbance observer (NDOB) to estimate the lumped disturbance, and a switching algorithm to adjust the desired robot trajectories. The proposed controller is validated on a pneumatic-driven fabric soft robot whose dynamics is described by a new extended rigid-arm model to fit the actuator design. A stability analysis of the proposed controller is also presented. Experimental results show that, despite modeling uncertainties, the robot can detect obstacles, adjust the reference trajectories to maintain compliance, and recover to track the original desired path once the obstacle is removed. Without force sensors, the proposed model-based controller can adjust the robot’s stiffness based on the estimated disturbance to achieve goal reaching and compliant interaction with unknown obstacles.more » « less
An official website of the United States government

