skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The bidirectional ballot polytope
A bidirectional ballot sequence (BBS) is a finite binary sequence with the property that every prefix and suffix contains strictly more ones than zeros. BBS’s were introduced by Zhao, and independently by Bosquet-M´elou and Ponty as (1, 1)-culminating paths. Both sets of authors noted the difficulty in counting these objects, and to date research on bidirectional ballot sequences has been concerned with asymptotics. We introduce a continuous analogue of bidirectional ballot sequences which we call bidirectional gerrymanders, and show that the set of bidirectional gerrymanders form a convex polytope sitting inside the unit cube, which we refer to as the bidirectional ballot polytope. We prove that every (2n − 1)-dimensional unit cube can be partitioned into 2n − 1 isometric copies of the (2n−1)-dimensional bidirectional ballot polytope. Furthermore, we show that the vertices of this polytope are all also vertices of the cube, and that the vertices are in bijection with BBS’s. An immediate corollary is a geometric explanation of the result of Zhao and of Bosquet-M´elou and Ponty that the number of BBS’s of length n is (2n/n).  more » « less
Award ID(s):
1659037 1561945
PAR ID:
10092874
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Integers
Volume:
18
ISSN:
1553-1732
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the construction of a polygon P with n vertices whose turning angles at the vertices are given by a sequence A=(α0,…,αn−1) , αi∈(−π,π) , for i∈{0,…,n−1} . The problem of realizing A by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an angle graph. In 2D, we characterize sequences A for which every generic polygon P⊂R2 realizing A has at least c crossings, for every c∈N , and describe an efficient algorithm that constructs, for a given sequence A, a generic polygon P⊂R2 that realizes A with the minimum number of crossings. In 3D, we describe an efficient algorithm that tests whether a given sequence A can be realized by a (not necessarily generic) polygon P⊂R3 , and for every realizable sequence the algorithm finds a realization. 
    more » « less
  2. We consider the construction of a polygon P with n vertices whose turning angles at the vertices are given by a sequence A = (α0 , . . . , αn−1 ), αi ∈ (−π,π), for i ∈ {0,...,n − 1}. The problem of realizing A by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an angle graph. In 2D, we characterize sequences A for which every generic polygon P ⊂ R2 realizing A has at least c crossings, and describe an efficient algorithm that constructs, for a given sequence A, a generic polygon P ⊂ R2 that realizes A with the minimum number of crossings. In 3D, we describe an efficient algorithm that tests whether a given sequence A can be realized by a (not necessarily generic) polygon P ⊂ R3, and for every realizable sequence finds a realization. 
    more » « less
  3. Given a set S of n points in the plane and a parameter ε>0, a Euclidean (1+ε) -spanner is a geometric graph G=(S,E) that contains a path of weight at most (1+ε)∥pq∥2 for all p,q∈S . We show that the minimum weight of a Euclidean (1+ε)-spanner for n points in the unit square [0,1]2 is O(ε−3/2n−−√), and this bound is the best possible. The upper bound is based on a new spanner algorithm that sparsifies Yao-graphs. It improves upon the baseline O(ε−2n−−√), obtained by combining a tight bound for the weight of an MST and a tight bound for the lightness of Euclidean (1+ε)-spanners, which is the ratio of the spanner weight to the weight of the MST. The result generalizes to d-space for all d∈N : The minimum weight of a Euclidean (1+ε)-spanner for n points in the unit cube [0,1]d is Od(ε(1−d2)/dn(d−1)/d), and this bound is the best possible. For the n×n section of the integer lattice, we show that the minimum weight of a Euclidean (1+ε)-spanner is between Ω(ε−3/4n2) and O(ε−1log(ε−1)n2). These bounds become Ω(ε−3/4n−−√) and O(ε−1log(ε−1)n−−√) when scaled to a grid of n points in [0,1]2. . 
    more » « less
  4. The spread of a graph $$G$$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $$G$$. Gotshall, O'Brien and Tait conjectured that for sufficiently large $$n$$, the $$n$$-vertex outerplanar graph with maximum spread is the graph obtained by joining a vertex to a path on $n-1$ vertices. In this paper, we disprove this conjecture by showing that the extremal graph is the graph obtained by joining a vertex to a path on $$\lceil(2n-1)/3\rceil$$ vertices and $$\lfloor(n-2)/3\rfloor$$ isolated vertices. For planar graphs, we show that the extremal $$n$$-vertex planar graph attaining the maximum spread is the graph obtained by joining two nonadjacent vertices to a path on $$\lceil(2n-2)/3\rceil$$ vertices and $$\lfloor(n-4)/3\rfloor$$ isolated vertices. 
    more » « less
  5. Abstract We note that the recent polynomial proofs of the spherical and complex plank covering problems by Zhao and Ortega-Moreno give some general information on zeros of real and complex polynomials restricted to the unit sphere. As a corollary of these results, we establish several generalizations of the celebrated Bang plank covering theorem. We prove a tight polynomial analog of the Bang theorem for the Euclidean ball and an even stronger polynomial version for the complex projective space. Specifically, for the ball, we show that for every real nonzero $$d$$-variate polynomial $$P$$ of degree $$n$$, there exists a point in the unit $$d$$-dimensional ball at distance at least $1/n$ from the zero set of the polynomial $$P$$. Using the polynomial approach, we also prove the strengthening of the Fejes Tóth zone conjecture on covering a sphere by spherical segments, closed parts of the sphere between two parallel hyperplanes. In particular, we show that the sum of angular widths of spherical segments covering the whole sphere is at least $$\pi $$. 
    more » « less