skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Origin of Thermal and Hyperthermal CO 2 from CO Oxidation on Pt Surfaces: The Role of Post-Transition-State Dynamics, Active Sites, and Chemisorbed CO 2
Award ID(s):
1665077
PAR ID:
10092991
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Two platinum precursors, Pt(CO) 2 Cl 2 and Pt(CO) 2 Br 2 , were designed for focused electron beam-induced deposition (FEBID) with the aim of producing platinum deposits of higher purity than those deposited from commercially available precursors. In this work, we present the first deposition experiments in a scanning electron microscope (SEM), wherein series of pillars were successfully grown from both precursors. The growth of the pillars was studied as a function of the electron dose and compared to deposits grown from the commercially available precursor MeCpPtMe 3 . The composition of the deposits was determined using energy-dispersive X-ray spectroscopy (EDX) and compared to the composition of deposits from MeCpPtMe 3 , as well as deposits made in an ultrahigh-vacuum (UHV) environment. A slight increase in metal content and a higher growth rate are achieved in the SEM for deposits from Pt(CO) 2 Cl 2 compared to MeCpPtMe 3 . However, deposits made from Pt(CO) 2 Br 2 show slightly less metal content and a lower growth rate compared to MeCpPtMe 3 . With both Pt(CO) 2 Cl 2 and Pt(CO) 2 Br 2 , a marked difference in composition was found between deposits made in the SEM and deposits made in UHV. In addition to Pt, the UHV deposits contained halogen species and little or no carbon, while the SEM deposits contained only small amounts of halogen species but high carbon content. Results from this study highlight the effect that deposition conditions can have on the composition of deposits created by FEBID. 
    more » « less
  2. Ion beam-induced deposition (IBID) using Pt(CO)2Cl2and Pt(CO)2Br2as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)2Cl2and Pt(CO)2Br2exposed to 3 keV Ar+, He+, and H2+ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum transfer from the incident ion to adsorbed precursor molecules. This precursor decomposition step is accompanied by a decrease in the oxidation state of the Pt(II) atoms and, in IBID, represents the elementary reaction step that converts the molecular precursor into an involatile PtX2species. Upon further ion irradiation these PtCl2or PtBr2species experience ion-induced sputtering. The difference between halogen and Pt sputter rates leads to a critical ion dose at which only Pt remains in the film. A comparison of the different ion/precursor combinations studied revealed that this sequence of elementary reaction steps is invariant, although the rates of CO desorption and subsequent physical sputtering were greatest for the heaviest (Ar+) ions. The ability of IBID to produce pure Pt films was confirmed by AES and XPS analysis of thin film deposits created by Ar+/Pt(CO)2Cl2, demonstrating the ability of data acquired from fundamental UHV surface science studies to provide insights that can be used to better understand the interactions between ions and precursors during IBID from inorganic precursors. 
    more » « less
  3. Abstract Converting CO2into industrially useful products is an appealing strategy for utilization of an abundant chemical resource. Electrochemical CO2reduction (eCO2R) offers a pathway to convert CO2into CO and ethylene, using renewable electricity. These products can be efficiently copolymerized by organometallic catalysts to generate polyketones. However, the conditions for these reactions are very different, presenting the challenge of coupling microenvironments typically encountered for the transformation of CO2into highly complex but desirable multicarbon products. Herein, we present a system to produce polyketone plastics entirely derived from CO2and water, where both the CO and C2H4intermediates are produced by eCO2R. In this system, a combination of Cu and Ag gas diffusion electrodes is used to generate a gas mixture with nearly equal concentrations of CO and C2H4, and a recirculatory CO2reduction loop is used to reach concentrations of above 11% each, leading to a current‐to‐polymer efficiency of up to 51% and CO2utilization of 14%. 
    more » « less