skip to main content

Title: Exploration and development of gold- and silver-catalyzed cross dehydrogenative coupling toward donor–acceptor π-conjugated polymer synthesis
π-Conjugated polymers are materials of interest for use in organic electronics. Within these polymers, donor–acceptor polymers are favorable for solar cell applications due to improved charge mobility, better absorption in the low energy region of the solar spectrum, and tunable band gaps. One of the barriers to commercializing these donor–acceptor materials is that their synthetic pathways are complex because of the alternating repeat units in the polymer. To address this, the application of cross dehydrogenative coupling (also called oxidative CH/CH cross-coupling) toward the synthesis of donor–acceptor polymers was explored. In this work, the roles of specific reagents in a one-pot gold- and silver-catalyzed cross dehydrogenative coupling and the factors that contribute to selectivity for cross-coupling rather than homo-coupling are analyzed. Based on our results, we postulate that the percentage of alternating repeat units in the final polymer is affected by the increased reactivity of the dimer that forms in the initial stages of the polymerization compared to the monomer, which ultimately may be exploited to control the ratio of electron-rich to electron-poor monomers.
Authors:
; ;
Award ID(s):
1700982
Publication Date:
NSF-PAR ID:
10093211
Journal Name:
Polymer Chemistry
Volume:
10
Issue:
4
Page Range or eLocation-ID:
486 to 493
ISSN:
1759-9954
Sponsoring Org:
National Science Foundation
More Like this
  1. Conjugated polymers composed of tricoordinate boron and π-conjugated units possess extended conjugation with relatively low-lying LUMOs arising from p B –π interactions. However, donor–acceptor (D–A) polymers that feature triorganoboranes alternating with highly electron-rich donors remain scarce. We present here a new class of hybrid D–A polymers that combine electron-rich dithienosiloles or dithienogermoles with highly robust tricoordinate borane acceptors. Polymers of modest to high molecular weight are readily prepared by Pd-catalyzed Stille coupling reaction of bis(halothienyl)boranes and distannyldithienosiloles or -germoles. The polymers are obtained as dark red solids that are stable in air and soluble in common organic solvents. Long wavelength UV-vis absorptions at ca. 500–550 nm indicate effective π-conjugation and pronounced D–A interactions along the backbone. The emission maxima occur at wavelengths longer than 600 nm in solution and experience further shifts to lower energy with increasing solvent polarity, indicative of strong intramolecular charge transfer (ICT) character of the excited state. The powerful acceptor character of the borane comonomer units in the polymer structures is also evident from cyclic voltammetry (CV) analyses that reveal relatively low-lying LUMO levels of the polymers, enhancing the D–A interaction. Density functional theory (DFT) calculations on model oligomers further support these experimental observations.
  2. Stable organic semiconductors (OSCs) with a high-spin ground-state can profoundly impact emerging technologies such as organic magnetism, spintronics, and medical imaging. Over the last decade, there has been a significant effort to design π-conjugated materials with unpaired spin centers. Here, we report new donor–acceptor (D–A) conjugated polymers comprising cyclopentadithiophene and cyclopentadiselenophene donors with benzobisthiadiazole (BBT) and iso-BBT acceptors. Density functional theory calculations show that the BBT-based polymers display a decreasing singlet–triplet energy gap with increasing oligomer chain length, with degenerate singlet and triplet states for a N = 8 repeat unit. Furthermore, a considerable distance between the unpaired electrons with a pure diradical character disrupts the π-bond covalency and localizes the unpaired spins at the polymer ends. However, replacing the BBT acceptor with iso-BBT leads to a closed-shell configuration with a low-spin ground-state and a localized spin density on the polymer cores. This study shows the significance of the judicious choice of π-conjugated scaffolds in generating low- ( S = 0) and high-spin ( S = 1) ground-states in the neutral form, by modulation of spin topology in extended π-conjugated D–A polymers for emergent optoelectronic applications.
  3. Understanding the structural parameters that determine the extension of π-conjugation in 2-dimensions is key for controlling the optical, photophysical, and electronic properties of 2D-π-conjugated materials. In this article, three non-slanted H-mers including a donor–acceptor H-mer (H-mer-3) with an increase in dihedral angle (twist) between the strands and rungs are synthesized and studied. These non-slanted H-mers represent the repeat units of 2D-π-conjugated materials. H-mer-3, containing donor-strands and an acceptor-rung, is an unexplored donor–acceptor architecture in both slanted and non-slanted H-mers. The H-mers displayed both acid and base dependent optical properties. While the rungs have a little impact on the H-mer absorption spectra they play a key role in the emission and fluorescence lifetime. H-mer-3 ( i.e. , donor–acceptor H-mer) shows a higher Stokes shift and fluorescence lifetime than the other two H-mers. The twist and the presence of an electron deficient rung in H-mer-3 facilitated an intramolecular charge transfer in the excited state from the strands to the electron deficient rung, and therefore control over the H-mer emission properties. The lack of insulating pendant chains, reduced π–π interactions in thinfilms, and longer fluorescence lifetimes make these H-mers interesting candidates for various electronic and optoelectronic applications.
  4. Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces ofmore »MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.« less
  5. Cycloparaphenylenes have promise as novel fluorescent materials. However, shifting their fluorescence beyond 510 nm is difficult. Herein, we computationally explore the effect of incorporating electron accepting and electron donating units on CPP photophysical properties at the CAM-B3LYP/6-311G** level. We demonstrate that incorporation of donor and acceptor units may shift the CPP fluorescence as far as 1193 nm. This computational work directs the synthesis of bright red-emitting CPPs. Furthermore, the nanohoop architecture allows for interrogation of strain effects on common conjugated polymer donor and acceptor units. Strain results in a bathochromic shift versus linear variants, demonstrating the value of using strain to push the limits of low band gap materials.