skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lift-off cell lithography for cell patterning with clean background
We developed a highly efficient method for patterning cells by a novel and simple technique called lift-off cell lithography (LCL). Our approach borrows the key concept of lift-off lithography from microfabrication and utilizes a fully biocompatible process to achieve high-throughput, high-efficiency cell patterning with nearly zero background defects across a large surface area. Using LCL, we reproducibly achieved >70% patterning efficiency for both adherent and non-adherent cells with <1% defects in undesired areas.  more » « less
Award ID(s):
1711507
PAR ID:
10093247
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
Volume:
18
Issue:
20
ISSN:
1473-0197
Page Range / eLocation ID:
3074 to 3078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this article, we demonstrate an acoustofluidic device for cell lysis using the acoustic streaming effects induced by acoustically oscillating sharp-edged structures. The acoustic streaming locally generates high shear forces that can mechanically rupture cell membranes. With the acoustic-streaming-derived shear forces, our acoustofluidic device can perform cell lysis in a continuous, reagent-free manner, with a lysis efficiency of more than 90% over a range of sample flow rates. We demonstrate that our acoustofluidic lysis device works well on both adherent and non-adherent cells. We also validate it using clinically relevant samples such as red blood cells infected with malarial parasites. Additionally, the unique capability of our acoustofluidic device was demonstrated by performing downstream protein analysis and gene profiling without additional washing steps post-lysis. Our device is simple to fabricate and operate while consuming a relatively low volume of samples. These advantages and other features including the reagent-free nature and controllable lysis efficiency make our platform valuable for many biological and biomedical applications, particularly for the development of point-of-care platforms. 
    more » « less
  2. Collective movement and organization of cell monolayers are important for wound healing and tissue development. Recent experiments highlighted the importance of liquid crystal order within these layers, suggesting that +1 topological defects have a role in organizing tissue morphogenesis. We study fibroblast organization, motion, and proliferation on a substrate with micron-sized ridges that induce +1 and −1 topological defects using simulation and experiment. We model cells as self-propelled deformable ellipses that interact via a Gay–Berne potential. Unlike earlier work on other cell types, we see that density variation near defects is not explained by collective migration. We propose instead that fibroblasts have different division rates depending on their area and aspect ratio. This model captures key features of our previous experiments: the alignment quality worsens at high cell density and, at the center of the +1 defects, cells can adopt either highly anisotropic or primarily isotropic morphologies. Experiments performed with different ridge heights confirm a prediction of this model: Suppressing migration across ridges promotes higher cell density at the +1 defect. Our work enables a mechanism for tissue patterning using topological defects without relying on cell migration. 
    more » « less
  3. null (Ed.)
    Abstract Background Evasion from programmed cell death is a hallmark of cancer and can be achieved in cancer cells by overexpression of inhibitor of apoptosis proteins (IAPs). Second mitochondria-derived activator of caspases (SMAC) directly bind to IAPs and promote apoptosis; thus, SMAC mimetics have been investigated in a variety of cancer types. particularly in diseases with high inflammation and NFĸB activation. Given that elevated TNFα levels and NFĸB activation is a characteristic feature of myeloproliferative neoplasms (MPN), we investigated the effect of the SMAC mimetic LCL-161 on MPN cell survival in vitro and disease development in vivo. Methods To investigate the effect of the SMAC mimetic LCL-161 in vitro, we utilized murine and human cell lines to perform cell viability assays as well as primary bone marrow from mice or humans with JAK2 V617F –driven MPN to interrogate myeloid colony formation. To elucidate the effect of the SMAC mimetic LCL-161 in vivo, we treated a JAK2 V617F –driven mouse model of MPN with LCL-161 then assessed blood counts, splenomegaly, and myelofibrosis. Results We found that JAK2 V617F -mutated cells are hypersensitive to the SMAC mimetic LCL-161 in the absence of exogenous TNFα. JAK2 kinase activity and NFĸB activation is required for JAK2 V617F -mediated sensitivity to LCL-161, as JAK or NFĸB inhibitors diminished the differential sensitivity of JAK2 V617F mutant cells to IAP inhibition. Finally, LCL-161 reduces splenomegaly and may reduce fibrosis in a mouse model of JAK2 V617F -driven MPN. Conclusion LCL-161 may be therapeutically useful in MPN, in particular when exogenous TNFα signaling is blocked. NFĸB activation is a characteristic feature of JAK2 V617F mutant cells and this sensitizes them to SMAC mimetic induced killing even in the absence of TNFα. However, when exogenous TNFα is added, NFĸB is activated in both mutant and wild-type cells, abolishing the differential sensitivity. Moreover, JAK kinase activity is required for the differential sensitivity of JAK2 V617F mutant cells, suggesting that the addition of JAK2 inhibitors to SMAC mimetics would detract from the ability of SMAC mimetics to selectively target JAK2 V617F mutant cells. Instead, combination therapy with other agents that reduce inflammatory cytokines but preserve JAK2 signaling in mutant cells may be a more beneficial combination therapy in MPN. 
    more » « less
  4. Recently developed graded photonic super-crystals show an enhanced light absorption and light extraction efficiency if they are integrated with a solar cell and an organic light emitting device, respectively. In this paper, we present the holographic fabrication of a graded photonic super-crystal with a rectangular unit super-cell. The spatial light modulator-based pixel-by-pixel phase engineering of the incident laser beam provides a high resolution phase pattern for interference lithography. This also provides a flexible design for the graded photonic super-crystals with a different ratio of length over the width of the rectangular unit super-cell. The light extraction efficiency is simulated for the organic light emitting device, where the cathode is patterned with the graded photonic super-crystal. The high extraction efficiency is maintained for different exposure thresholds during the interference lithography. The desired polarization effects are observed for certain exposure thresholds. The extraction efficiency reaches as high as 75% in the glass substrate. 
    more » « less
  5. The diploid anuran Xenopus tropicalis has emerged as a key research model in cell and developmental biology. To enhance the usefulness of this species, we developed methods for generating immortal cell lines from Nigerian strain (NXR_1018, RRID:SCR_013731) X. tropicalis embryos. We generated 14 cell lines that were propagated for several months. We selected four morphologically distinct lines, XTN-6, XTN-8, XTN-10 and XTN-12 for further characterization. Karyotype analysis revealed that three of the lines, XTN-8, XTN-10 and XTN-12 were primarily diploid. XTN-6 cultures showed a consistent mixed population of diploid cells, cells with chromosome 8 trisomy, and cells containing a tetraploid content of chromosomes. The lines were propagated using conventional culture methods as adherent cultures at 30°C in a simple, diluted L-15 medium containing fetal bovine serum without use of a high CO 2 incubator. Transcriptome analysis indicated that the four lines were distinct lineages. These methods will be useful in the generation of cell lines from normal and mutant strains of X. tropicalis as well as other species of Xenopus . 
    more » « less