skip to main content


Title: Systemic siRNA delivery to tumors by cell-penetrating α-helical polypeptide-based metastable nanoparticles
Systemic, non-viral siRNA delivery for cancer treatment is mainly achieved via condensation by cationic materials ( e.g. , lipids and cationic polymers), which nevertheless, suffers from poor serum stability, non-specific tissue interaction, and unsatisfactory membrane activity against efficient in vivo gene knockdown. Here, we report the design of a metastable, cancer-targeting siRNA delivery system based on two functional polymers, PVBLG-8, a cationic, helical cell-penetrating polypeptide, and poly( l -glutamic acid) (PLG), an anionic random-coiled polypeptide. PVBLG-8 with rigid, linear structure showed weak siRNA condensation capability, and PLG with flexible chains was incorporated as a stabilizer which provided sufficient molecular entanglement with PVBLG-8 to encapsulate the siRNA within the polymeric network. The obtained PVBLG-8/siRNA/PLG nanoparticles (PSP NPs) with positive charges were sequentially coated with additional amount of PLG, which reversed the surface charge from positive to negative to yield the metastable PVBLG-8/siRNA/PLG@PLG (PSPP) NPs. The PSPP NPs featured desired serum stability during circulation to enhance tumor accumulation via the enhanced permeability and retention (EPR) effect. Upon acidification in the tumor extracellular microenvironment and intracellular endosomes, the partial protonation of PLG on PSPP NPs surface would lead to dissociation of PLG coating from NPs, exposure of the highly membrane-active PVBLG-8, and surface charge reversal from negative to positive, which subsequently promoted tumor penetration, selective cancer cell internalization, and efficient endolysosomal escape. When siRNA against epidermal growth factor receptor (EGFR) was encapsulated, the PSPP NPs showed excellent tumor penetration capability, tumor cell uptake level, EGFR silencing efficiency, and tumor growth inhibition efficacy in U-87 MG glioblastoma tumor spheroids in vitro and in xenograft tumor-bearing mice in vivo , outperforming the PSP NPs and several commercial reagents such as Lipofectamine 2000 and poly( l -lysine) (PLL). This study therefore demonstrates a facile and unique design approach of metastable and charge reversal NPs, which overcomes multiple biological barriers against systemic siRNA delivery toward anti-cancer treatment.  more » « less
Award ID(s):
1709820
NSF-PAR ID:
10093254
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
10
Issue:
32
ISSN:
2040-3364
Page Range / eLocation ID:
15339 to 15349
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Linear-dendritic block copolymers (LDBCs) have emerged as promising materials for drug delivery applications, with their hybrid structure exploiting advantageous properties of both linear and dendritic polymers. LDBCs have promising encapsulation efficiencies that can be used to encapsulate both hydrophobic and hydrophilic dyes for bioimaging, cancer therapeutics, and small biomolecules. Additionally, LDBCS can be readily functionalized with varying terminal groups for more efficient targeted delivery. However, depending on structural composition and surface properties, LDBCs also exhibit high dispersities ( Đ ), poor shelf-life, and potentially high cytotoxicity to non-target interfacing blood cells during intravenous drug delivery. Here, we show that choline carboxylic acid-based ionic liquids (ILs) electrostatically solvate LDBCs by direct dissolution and form stable and biocompatible IL-integrated LDBC nano-assemblies. These nano-assemblies are endowed with red blood cell-hitchhiking capabilities and show altered cellular uptake behavior ex vivo . When modified with choline and trans -2-hexenoic acid, IL-LDBC dispersity dropped by half compared to bare LDBCs, and showed a significant shift of the cationic surface charge towards neutrality. Proton nuclear magnetic resonance spectroscopy evidenced twice the total amount of IL on the LDBCs relative to an established IL-linear PLGA platform. Transmission electron microscopy suggested the formation of a nanoparticle surface coating, which acted as a protective agent against RBC hemolysis, reducing hemolysis from 73% (LDBC) to 25% (IL-LDBC). However, dramatically different uptake behavior of IL-LDBCs vs. IL-PLGA NPs in RAW 264.7 macrophage cells suggests a different conformational IL-NP surface assembly on the linear versus the linear-dendritic nanoparticles. These results suggest that by controlling the physical chemistry of polymer-IL interactions and assembly on the nanoscale, biological function can be tailored toward the development of more effective and more precisely targeted therapies. 
    more » « less
  2. null (Ed.)
    To realize RNA interference (RNAi) therapeutics, it is necessary to deliver therapeutic RNAs (such as small interfering RNA or siRNA) into cell cytoplasm. A major challenge of RNAi therapeutics is the endosomal entrapment of the delivered siRNA. In this study, we developed a family of delivery vehicles called Janus base nanopieces (NPs). They are rod-shaped nanoparticles formed by bundles of Janus base nanotubes (JBNTs) with RNA cargoes incorporated inside via charge interactions. JBNTs are formed by noncovalent interactions of small molecules consisting of a base component mimicking DNA bases and an amino acid side chain. NPs presented many advantages over conventional delivery materials. NPs efficiently entered cells via macropinocytosis similar to lipid nanoparticles while presenting much better endosomal escape ability than lipid nanoparticles; NPs escaped from endosomes via a “proton sponge” effect similar to cationic polymers while presenting significant lower cytotoxicity compared to polymers and lipids due to their noncovalent structures and DNA-mimicking chemistry. In a proof-of-concept experiment, we have shown that NPs are promising candidates for antiviral delivery applications, which may be used for conditions such as COVID-19 in the future. 
    more » « less
  3. Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure–activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL–NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL–NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases. 
    more » « less
  4. Abstract

    Automated attachment of chemotherapeutic drugs to oligonucleotides through phosphoramidite chemistry and DNA synthesis has emerged as a powerful technology in constructing structure‐defined and payload‐tunable oligonucleotide–drug conjugates. In practice, however, in vivo delivery of these oligonucleotides remains a challenge. Inspired by the systemic transport of hydrophobic payloads by serum albumin in nature, we report the development of a lipid‐conjugated floxuridine homomeric oligonucleotide (LFU20) that “hitchhikes” with endogenous serum albumin for cancer chemotherapy. Upon intravenous injection, LFU20 immediately inserts into the hydrophobic cave of albumin to form an LFU20/albumin complex, which accumulates in the tumor by the enhanced permeability and retention (EPR) effect and internalizes into the lysosomes of cancer cells. After degradation, cytotoxic floxuridine monophosphate is released to inhibit cell proliferation.

     
    more » « less
  5. Abstract

    Automated attachment of chemotherapeutic drugs to oligonucleotides through phosphoramidite chemistry and DNA synthesis has emerged as a powerful technology in constructing structure‐defined and payload‐tunable oligonucleotide–drug conjugates. In practice, however, in vivo delivery of these oligonucleotides remains a challenge. Inspired by the systemic transport of hydrophobic payloads by serum albumin in nature, we report the development of a lipid‐conjugated floxuridine homomeric oligonucleotide (LFU20) that “hitchhikes” with endogenous serum albumin for cancer chemotherapy. Upon intravenous injection, LFU20 immediately inserts into the hydrophobic cave of albumin to form an LFU20/albumin complex, which accumulates in the tumor by the enhanced permeability and retention (EPR) effect and internalizes into the lysosomes of cancer cells. After degradation, cytotoxic floxuridine monophosphate is released to inhibit cell proliferation.

     
    more » « less