skip to main content

Title: Exploring redshift-space distortions in large-scale structure
We explore and compare different ways large-scale structure observables in redshift-space and real space can be connected. These include direct computation in La- grangian space, moment expansions and two formulations of the streaming model. We derive for the first time a Fourier space version of the streaming model, which yields an algebraic relation between the real- and redshift-space power spectra which can be compared to ear- lier, phenomenological models. By considering the redshift-space 2-point function in both configuration and Fourier space, we show how to generalize the Gaussian streaming model to higher orders in a systematic and computationally tractable way. We present a closed- form solution to the Zeldovich power spectrum in redshift space and use this as a framework for exploring convergence properties of different expansion approaches. While we use the Zeldovich approximation to illustrate these results, much of the formalism and many of the relations we derive hold beyond perturbation theory, and could be used with ingredients measured from N-body simulations or in other areas requiring decomposition of Cartesian tensors times plane waves. We finish with a discussion of the redshift-space bispectrum, bias and stochasticity and terms in Lagrangian perturbation theory up to 1-loop order.
Authors:
;
Award ID(s):
1713791
Publication Date:
NSF-PAR ID:
10093430
Journal Name:
Journal of cosmology and astroparticle physics
Volume:
03
Page Range or eLocation-ID:
007
ISSN:
1475-7516
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We have studied the galaxy-group cross-correlations in redshift space for the Galaxy And Mass Assembly (GAMA) Survey. We use a set of mock GAMA galaxy and group catalogues to develop and test a novel ‘halo streaming’ model for redshift-space distortions. This treats 2-halo correlations via the streaming model, plus an empirical 1-halo term derived from the mocks, allowing accurate modelling into the non-linear regime. In order to probe the robustness of the growth rate inferred from redshift-space distortions, we divide galaxies by colour, and divide groups according to their total stellar mass, calibrated to total mass via gravitational lensing. We fit our model to correlation data, to obtain estimates of the perturbation growth rate, fσ8, validating parameter errors via the dispersion between different mock realizations. In both mocks and real data, we demonstrate that the results are closely consistent between different subsets of the group and galaxy populations, considering the use of correlation data down to some minimum projected radius, rmin. For the mock data, we can use the halo streaming model to below $r_{\rm min} = 5{\, h^{-1}\, \rm Mpc}$, finding that all subsets yield growth rates within about 3 per cent of each other, and consistent with the truemore »value. For the actual GAMA data, the results are limited by cosmic variance: fσ8 = 0.29 ± 0.10 at an effective redshift of 0.20; but there is every reason to expect that this method will yield precise constraints from larger data sets of the same type, such as the Dark Energy Spectroscopic Instrument (DESI) bright galaxy survey.

    « less
  2. Abstract Line intensity mapping (LIM) proposes to efficiently observe distant faint galaxies and map the matter density field at high redshift.Building upon the formalism in a companion paper,we first highlight the degeneracies between cosmology and astrophysics in LIM.We discuss what can be constrained from measurements of the mean intensity and redshift-space power spectra.With a sufficient spectral resolution, the large-scale redshift-space distortions of the 2-halo term can be measured, helping to break the degeneracy between bias and mean intensity.With a higher spectral resolution, measuring the small-scale redshift-space distortions disentangles the 1-halo and shot noise terms.Cross-correlations with external galaxy catalogs or lensing surveys further break degeneracies.We derive requirements for experiments similar to SPHEREx, HETDEX, CDIM, COMAP and CONCERTO.We then revisit the question of the optimality of the LIM observables, compared to galaxy detection, for astrophysics and cosmology.We use a matched filter to compute the luminosity detection threshold for individual sources.We show that LIM contains information about galaxies too faint to detect, in the high-noise or high-confusion regimes.We quantify the sparsity and clustering bias of the detected sources and compare them to LIM, showing in which cases LIM is a better tracer of the matter density.We extend previous work by answering these questionsmore »as a function of Fourier scale, including for the first time the effect of cosmic variance, pixel-to-pixel correlations, luminosity-dependent clustering bias and redshift-space distortions.« less
  3. Abstract

    Galactic disks are highly responsive systems that often undergo external perturbations and subsequent collisionless equilibration, predominantly via phase mixing. We use linear perturbation theory to study the response of infinite isothermal slab analogs of disks to perturbations with diverse spatiotemporal characteristics. Without self-gravity of the response, the dominant Fourier modes that get excited in a disk are the bending and breathing modes, which, due to vertical phase mixing, trigger local phase-space spirals that are one- and two-armed, respectively. We demonstrate how the lateral streaming motion of slab stars causes phase spirals to damp out over time. The ratio of the perturbation timescale (τP) to the local, vertical oscillation time (τz) ultimately decides which of the two modes is excited. Faster, more impulsive (τP<τz) and slower, more adiabatic (τP>τz) perturbations excite stronger breathing and bending modes, respectively, although the response to very slow perturbations is exponentially suppressed. For encounters with satellite galaxies, this translates to more distant and more perpendicular encounters triggering stronger bending modes. We compute the direct response of the Milky Way disk to several of its satellite galaxies and find that recent encounters with all of them excite bending modes in the solar neighborhood. The encounter withmore »Sagittarius triggers a response that is at least 1–2 orders of magnitude larger than that due to any other satellite, including the Large Magellanic Cloud. We briefly discuss how ignoring the presence of a dark matter halo and the self-gravity of the response might impact our conclusions.

    « less
  4. null (Ed.)
    Weak lensing measurements suffer from well-known shear estimation biases, which can be partially corrected for with the use of image simulations. In this work we present an analysis of simulated images that mimic Hubble Space Telescope/Advance Camera for Surveys observations of high-redshift galaxy clusters, including cluster specific issues such as non-weak shear and increased blending. Our synthetic galaxies have been generated to have similar observed properties as the background-selected source samples studied in the real images. First, we used simulations with galaxies placed on a grid to determine a revised signal-to-noise-dependent ( S / N KSB ) correction for multiplicative shear measurement bias, and to quantify the sensitivity of our KSB+ bias calibration to mismatches of galaxy or PSF properties between the real data and the simulations. Next, we studied the impact of increased blending and light contamination from cluster and foreground galaxies, finding it to be negligible for high-redshift ( z  >  0.7) clusters, whereas shear measurements can be affected at the ∼1% level for lower redshift clusters given their brighter member galaxies. Finally, we studied the impact of fainter neighbours and selection bias using a set of simulated images that mimic the positions and magnitudes of galaxies inmore »Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) data, thereby including realistic clustering. While the initial SExtractor object detection causes a multiplicative shear selection bias of −0.028 ± 0.002, this is reduced to −0.016 ± 0.002 by further cuts applied in our pipeline. Given the limited depth of the CANDELS data, we compared our CANDELS-based estimate for the impact of faint neighbours on the multiplicative shear measurement bias to a grid-based analysis, to which we added clustered galaxies to even fainter magnitudes based on Hubble Ultra Deep Field data, yielding a refined estimate of ∼ − 0.013. Our sensitivity analysis suggests that our pipeline is calibrated to an accuracy of ∼0.015 once all corrections are applied, which is fully sufficient for current and near-future weak lensing studies of high-redshift clusters. As an application, we used it for a refined analysis of three highly relaxed clusters from the South Pole Telescope Sunyaev-Zeldovich survey, where we now included measurements down to the cluster core ( r  >  200 kpc) as enabled by our work. Compared to previously employed scales ( r  >  500 kpc), this tightens the cluster mass constraints by a factor 1.38 on average.« less
  5. Context. Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2839 significant galaxy overdensities at redshifts 0.7 ≲  z  ≲ 1.5, which included extensive follow-up imaging from the Spitzer Space Telescope to determine cluster richnesses. Concurrently, the Atacama Cosmology Telescope (ACT) has produced large area millimeter-wave maps in three frequency bands along with a large catalog of Sunyaev-Zeldovich (SZ)-selected clusters as part of its Data Release 5 (DR5). Aims. We aim to verify and characterize MaDCoWS clusters using measurements of, or limits on, their thermal SZ effect signatures. We also use these detections to establish the scaling relation between SZ mass and the MaDCoWS-defined richness. Methods. Using the maps and cluster catalog from DR5, we explore the scaling between SZ mass and cluster richness. We do this by comparing cataloged detections and extracting individual and stacked SZ signals from the MaDCoWS cluster locations. We use complementary radio survey data from the Very Large Array, submillimeter data from Herschel , and ACT 224 GHz data to assess the impact of contaminating sourcesmore »on the SZ signals from both ACT and MaDCoWS clusters. We use a hierarchical Bayesian model to fit the mass-richness scaling relation, allowing for clusters to be drawn from two populations: one, a Gaussian centered on the mass-richness relation, and the other, a Gaussian centered on zero SZ signal. Results. We find that MaDCoWS clusters have submillimeter contamination that is consistent with a gray-body spectrum, while the ACT clusters are consistent with no submillimeter emission on average. Additionally, the intrinsic radio intensities of ACT clusters are lower than those of MaDCoWS clusters, even when the ACT clusters are restricted to the same redshift range as the MaDCoWS clusters. We find the best-fit ACT SZ mass versus MaDCoWS richness scaling relation has a slope of p 1 = 1.84 −0.14 +0.15 , where the slope is defined as M λ ∝ 15 p 1 and λ 15 is the richness. We also find that the ACT SZ signals for a significant fraction (∼57%) of the MaDCoWS sample can statistically be described as being drawn from a noise-like distribution, indicating that the candidates are possibly dominated by low-mass and unvirialized systems that are below the mass limit of the ACT sample. Further, we note that a large portion of the optically confirmed ACT clusters located in the same volume of the sky as MaDCoWS are not selected by MaDCoWS, indicating that the MaDCoWS sample is not complete with respect to SZ selection. Finally, we find that the radio loud fraction of MaDCoWS clusters increases with richness, while we find no evidence that the submillimeter emission of the MaDCoWS clusters evolves with richness. Conclusions. We conclude that the original MaDCoWS selection function is not well defined and, as such, reiterate the MaDCoWS collaboration’s recommendation that the sample is suited for probing cluster and galaxy evolution, but not cosmological analyses. We find a best-fit mass-richness relation slope that agrees with the published MaDCoWS preliminary results. Additionally, we find that while the approximate level of infill of the ACT and MaDCoWS cluster SZ signals (1–2%) is subdominant to other sources of uncertainty for current generation experiments, characterizing and removing this bias will be critical for next-generation experiments hoping to constrain cluster masses at the sub-percent level.« less