We have studied the galaxy-group cross-correlations in redshift space for the Galaxy And Mass Assembly (GAMA) Survey. We use a set of mock GAMA galaxy and group catalogues to develop and test a novel ‘halo streaming’ model for redshift-space distortions. This treats 2-halo correlations via the streaming model, plus an empirical 1-halo term derived from the mocks, allowing accurate modelling into the non-linear regime. In order to probe the robustness of the growth rate inferred from redshift-space distortions, we divide galaxies by colour, and divide groups according to their total stellar mass, calibrated to total mass via gravitational lensing. We fit our model to correlation data, to obtain estimates of the perturbation growth rate, fσ8, validating parameter errors via the dispersion between different mock realizations. In both mocks and real data, we demonstrate that the results are closely consistent between different subsets of the group and galaxy populations, considering the use of correlation data down to some minimum projected radius, rmin. For the mock data, we can use the halo streaming model to below $r_{\rm min} = 5{\, h^{-1}\, \rm Mpc}$, finding that all subsets yield growth rates within about 3 per cent of each other, and consistent with the truemore »
- Award ID(s):
- 1713791
- Publication Date:
- NSF-PAR ID:
- 10093430
- Journal Name:
- Journal of cosmology and astroparticle physics
- Volume:
- 03
- Page Range or eLocation-ID:
- 007
- ISSN:
- 1475-7516
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Line intensity mapping (LIM) proposes to efficiently observe distant faint galaxies and map the matter density field at high redshift.Building upon the formalism in a companion paper,we first highlight the degeneracies between cosmology and astrophysics in LIM.We discuss what can be constrained from measurements of the mean intensity and redshift-space power spectra.With a sufficient spectral resolution, the large-scale redshift-space distortions of the 2-halo term can be measured, helping to break the degeneracy between bias and mean intensity.With a higher spectral resolution, measuring the small-scale redshift-space distortions disentangles the 1-halo and shot noise terms.Cross-correlations with external galaxy catalogs or lensing surveys further break degeneracies.We derive requirements for experiments similar to SPHEREx, HETDEX, CDIM, COMAP and CONCERTO.We then revisit the question of the optimality of the LIM observables, compared to galaxy detection, for astrophysics and cosmology.We use a matched filter to compute the luminosity detection threshold for individual sources.We show that LIM contains information about galaxies too faint to detect, in the high-noise or high-confusion regimes.We quantify the sparsity and clustering bias of the detected sources and compare them to LIM, showing in which cases LIM is a better tracer of the matter density.We extend previous work by answering these questionsmore »
-
Abstract Galactic disks are highly responsive systems that often undergo external perturbations and subsequent collisionless equilibration, predominantly via phase mixing. We use linear perturbation theory to study the response of infinite isothermal slab analogs of disks to perturbations with diverse spatiotemporal characteristics. Without self-gravity of the response, the dominant Fourier modes that get excited in a disk are the bending and breathing modes, which, due to vertical phase mixing, trigger local phase-space spirals that are one- and two-armed, respectively. We demonstrate how the lateral streaming motion of slab stars causes phase spirals to damp out over time. The ratio of the perturbation timescale (
τ P) to the local, vertical oscillation time (τ z ) ultimately decides which of the two modes is excited. Faster, more impulsive (τ P<τ z ) and slower, more adiabatic (τ P>τ z ) perturbations excite stronger breathing and bending modes, respectively, although the response to very slow perturbations is exponentially suppressed. For encounters with satellite galaxies, this translates to more distant and more perpendicular encounters triggering stronger bending modes. We compute the direct response of the Milky Way disk to several of its satellite galaxies and find that recent encounters with all of them excite bending modes in the solar neighborhood. The encounter withmore » -
null (Ed.)Weak lensing measurements suffer from well-known shear estimation biases, which can be partially corrected for with the use of image simulations. In this work we present an analysis of simulated images that mimic Hubble Space Telescope/Advance Camera for Surveys observations of high-redshift galaxy clusters, including cluster specific issues such as non-weak shear and increased blending. Our synthetic galaxies have been generated to have similar observed properties as the background-selected source samples studied in the real images. First, we used simulations with galaxies placed on a grid to determine a revised signal-to-noise-dependent ( S / N KSB ) correction for multiplicative shear measurement bias, and to quantify the sensitivity of our KSB+ bias calibration to mismatches of galaxy or PSF properties between the real data and the simulations. Next, we studied the impact of increased blending and light contamination from cluster and foreground galaxies, finding it to be negligible for high-redshift ( z > 0.7) clusters, whereas shear measurements can be affected at the ∼1% level for lower redshift clusters given their brighter member galaxies. Finally, we studied the impact of fainter neighbours and selection bias using a set of simulated images that mimic the positions and magnitudes of galaxies inmore »
-
Context. Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2839 significant galaxy overdensities at redshifts 0.7 ≲ z ≲ 1.5, which included extensive follow-up imaging from the Spitzer Space Telescope to determine cluster richnesses. Concurrently, the Atacama Cosmology Telescope (ACT) has produced large area millimeter-wave maps in three frequency bands along with a large catalog of Sunyaev-Zeldovich (SZ)-selected clusters as part of its Data Release 5 (DR5). Aims. We aim to verify and characterize MaDCoWS clusters using measurements of, or limits on, their thermal SZ effect signatures. We also use these detections to establish the scaling relation between SZ mass and the MaDCoWS-defined richness. Methods. Using the maps and cluster catalog from DR5, we explore the scaling between SZ mass and cluster richness. We do this by comparing cataloged detections and extracting individual and stacked SZ signals from the MaDCoWS cluster locations. We use complementary radio survey data from the Very Large Array, submillimeter data from Herschel , and ACT 224 GHz data to assess the impact of contaminating sourcesmore »