skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: $$\eta ^{\prime }\rightarrow \eta \pi \pi $$η′→ηππ decays in unitarized resonance chiral theory
Award ID(s):
1714253
PAR ID:
10093512
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The European Physical Journal C
Volume:
78
Issue:
9
ISSN:
1434-6044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Searches for CP violation in the two-body decays $$ {D}_{(s)}^{+}\to {h}^{+}{\pi}^0 $$ D s + → h + π 0 and $$ {D}_{(s)}^{+}\to {h}^{+}\eta $$ D s + → h + η (where h + denotes a π + or K + meson) are performed using pp collision data collected by the LHCb experiment corresponding to either 9 fb − 1 or 6 fb − 1 of integrated luminosity. The π 0 and η mesons are reconstructed using the e + e − γ final state, which can proceed as three-body decays π 0 → e + e − γ and η → e + e − γ , or via the two-body decays π 0 → γγ and η → γγ followed by a photon conversion. The measurements are made relative to the control modes $$ {D}_{(s)}^{+}\to {K}_{\mathrm{S}}^0{h}^{+} $$ D s + → K S 0 h + to cancel the production and detection asymmetries. The CP asymmetries are measured to be $$ {\displaystyle \begin{array}{c}{\mathcal{A}}_{CP}\left({D}^{+}\to {\pi}^{+}{\pi}^0\right)=\left(-1.3\pm 0.9\pm 0.6\right)\%,\\ {}{\mathcal{A}}_{CP}\left({D}^{+}\to {K}^{+}{\pi}^0\right)=\left(-3.2\pm 4.7\pm 2.1\right)\%,\\ {}\begin{array}{c}{\mathcal{A}}_{CP}\left({D}^{+}\to {\pi}^{+}\eta \right)=\left(-0.2\pm 0.8\pm 0.4\right)\%,\\ {}{\mathcal{A}}_{CP}\left({D}^{+}\to {K}^{+}\eta \right)=\left(-6\pm 10\pm 4\right)\%,\\ {}\begin{array}{c}{\mathcal{A}}_{CP}\left({D}_s^{+}\to {K}^{+}{\pi}^0\right)=\left(-0.8\pm 3.9\pm 1.2\right)\%,\\ {}\begin{array}{c}{\mathcal{A}}_{CP}\left({D}_s^{+}\to {\pi}^{+}\eta \right)=\left(0.8\pm 0.7\pm 0.5\right)\%,\\ {}{\mathcal{A}}_{CP}\left({D}_s^{+}\to {K}^{+}\eta \right)=\left(0.9\pm 3.7\pm 1.1\right)\%,\end{array}\end{array}\end{array}\end{array}} $$ A CP D + → π + π 0 = − 1.3 ± 0.9 ± 0.6 % , A CP D + → K + π 0 = − 3.2 ± 4.7 ± 2.1 % , A CP D + → π + η = − 0.2 ± 0.8 ± 0.4 % , A CP D + → K + η = − 6 ± 10 ± 4 % , A CP D s + → K + π 0 = − 0.8 ± 3.9 ± 1.2 % , A CP D s + → π + η = 0.8 ± 0.7 ± 0.5 % , A CP D s + → K + η = 0.9 ± 3.7 ± 1.1 % , where the first uncertainties are statistical and the second systematic. These results are consistent with no CP violation and mostly constitute the most precise measurements of $$ {\mathcal{A}}_{CP} $$ A CP in these decay modes to date. 
    more » « less
  2. A<sc>bstract</sc> We present a study of$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ Ξ c 0 Ξ 0 π 0 ,$$ {\Xi}_c^0\to {\Xi}^0\eta $$ Ξ c 0 Ξ 0 η , and$$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ Ξ c 0 Ξ 0 η decays using the Belle and Belle II data samples, which have integrated luminosities of 980 fb−1and 426 fb−1, respectively. We measure the following relative branching fractions$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.48\pm 0.02\left(\textrm{stat}\right)\pm 0.03\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.11\pm 0.01\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.08\pm 0.02\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right)\end{array}} $$ B Ξ c 0 Ξ 0 π 0 / B Ξ c 0 Ξ π + = 0.48 ± 0.02 stat ± 0.03 syst , B Ξ c 0 Ξ 0 η / B Ξ c 0 Ξ π + = 0.11 ± 0.01 stat ± 0.01 syst , B Ξ c 0 Ξ 0 η / B Ξ c 0 Ξ π + = 0.08 ± 0.02 stat ± 0.01 syst for the first time, where the uncertainties are statistical (stat) and systematic (syst). By multiplying by the branching fraction of the normalization mode,$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ B Ξ c 0 Ξ π + , we obtain the following absolute branching fraction results$$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=\left(6.9\pm 0.3\left(\textrm{stat}\right)\pm 0.5\left(\textrm{syst}\right)\pm 1.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)=\left(1.6\pm 0.2\left(\textrm{stat}\right)\pm 0.2\left(\textrm{syst}\right)\pm 0.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\varXi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)=\left(1.2\pm 0.3\left(\textrm{stat}\right)\pm 0.1\left(\textrm{syst}\right)\pm 0.2\left(\operatorname{norm}\right)\right)\times {10}^{-3},\end{array}} $$ B Ξ c 0 Ξ 0 π 0 = 6.9 ± 0.3 stat ± 0.5 syst ± 1.3 norm × 10 3 , B Ξ c 0 Ξ 0 η = 1.6 ± 0.2 stat ± 0.2 syst ± 0.3 norm × 10 3 , B Ξ c 0 Ξ 0 η = 1.2 ± 0.3 stat ± 0.1 syst ± 0.2 norm × 10 3 , where the third uncertainties are from$$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ B Ξ c 0 Ξ π + . The asymmetry parameter for$$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ Ξ c 0 Ξ 0 π 0 is measured to be$$ \alpha \left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=-0.90\pm 0.15\left(\textrm{stat}\right)\pm 0.23\left(\textrm{syst}\right) $$ α Ξ c 0 Ξ 0 π 0 = 0.90 ± 0.15 stat ± 0.23 syst
    more » « less
  3. We define the notion of an almost polynomial identity of an associative algebra R R , and show that its existence implies the existence of an actual polynomial identity of R R . A similar result is also obtained for Lie algebras and Jordan algebras. We also prove related quantitative results for simple and semisimple algebras. 
    more » « less