skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Getting a grip: A framework for designing and adapting elementary science investigations
Experiments and other empirical investigations are, at heart, tools that scientists use to represent phenomena that are difficult to observe, measure, and compare: they are ways to "get a grip" on the world. In contrast, in elementary science classrooms, we often simplify investigations and provide step-by-step instructions telling students what to see so that they reach a desired conclusion. Here, Manz shares a framework for rethinking the classroom investigation. She describes how this framework better represents how scientists use investigations and supports opportunities for elementary students to engage in argumentation, explanation, and planning and carrying out investigations. She then discusses strategies that teachers can use to design or adapt investigations by implementing the framework.  more » « less
Award ID(s):
1749324
PAR ID:
10093550
Author(s) / Creator(s):
Date Published:
Journal Name:
Science and children
Volume:
56
Issue:
8
ISSN:
0036-8148
Page Range / eLocation ID:
80-87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sacristán, A.I.; Cortés-Zavala, J.C.; Ruiz-Arias, P.M. (Ed.)
    Collective Argumentation Learning and Coding (CALC) is a project focused on providing teachers with strategies to engage students in collective argumentation in mathematics, science, and coding. Collective argumentation can be characterized by any instance where multiple people (teachers and students) work together to establish a claim and provide evidence to support it (Conner et al., 2014b). Collective argumentation is an effective approach for promoting critical and higher order thinking and supporting students’ ability to articulate and justify claims. The goal of the CALC project is to help elementary school teachers extend the use of collective argumentation from teaching mathematics and science to teaching coding. Doing so increases the probability that teachers will integrate coding in regular classroom instruction, making it accessible to all students. This project highlighted Gloria (pseudonym), a fourth-grade teacher from Cohort 1 because of the extent to which she went from fear of coding to fluent implementation. Initially, Gloria was comfortable engaging her students in argumentation, explaining they already used it in mathematics with Cognitively Guided Instruction (CGI). However, she was “terrified” about learning to code because she didn’t view herself as proficient with technology. She was willing to overcome her fear of coding because she saw the value in providing her students with coding experiences that would help them develop the necessary skills for our increasingly technological society. In the course of three months, Gloria’s instruction progressed from using simple coding activities to more sophisticated coding platforms. This progression in her coding instruction paralleled the change in her personal feelings about coding as she moved from “terrified” to “comfortable with it”. 
    more » « less
  2. Digital storytelling in combination with makerspace activities holds significant potential to engage students and support their learning. When students play, such as through makerspace activities, they engage in critical thinking and problem solving. In our work, we are joining storytelling with computational thinking (CT) practices, physical science exploration, and makerspace activities through a digital narrative-centered learning environment for elementary school. Learning within the environment is undergirded by makerspace play that centers on finding solutions to an open problem—how can stranded scientists on a remote island power up their village using found materials? The learning environment supports students’ CT practices and science content learning as they use and problem solve with physical energy conversion kits, culminating in their creation of an interactive story. We present here a brief case study of the ways students’ experiences with makerspace play support their problem solving and storytelling. 
    more » « less
  3. This paper describes the development of a Create-a-Lego-Engineer (CALE) activity which was created as an alternative to the Draw-a-Scientist (DAST) and Draw-an-Engineer Tests (DAET). While the DAST and DAET examine students’ (mis)conceptions of scientists and engineers, they provide limited information about whether students can envision themselves as scientists or engineers now or in the future. We drew from the Lego Serious Play (LSP) method which is grounded on the premise that hands-on learning results in a deeper understanding of the world and oneself in it. The LSP method is a process used to enhance innovation and business development, and it involves adults building metaphorical representations of their identity using Lego bricks. We adapted this process for use with elementary students (3rd-5th grade) in a specific context, namely students are asked to build themselves as engineers and a scene depicting what they would be doing as an engineer. Lego bricks were chosen as they are familiar to most students, are easy to use even without prior experience, and require no special skills or artistic abilities. The activity allows us to explore students’ creations of physical representations of themselves as engineers, including issues related to gender and physical characteristics (e.g., skin color, hair color and style), all of which students can customize using a variety of Lego options. Students are provided with a variety of Lego person pieces in order to try and build a representation of themselves using Legos. Additionally, a wide variety of Lego brick pieces were provided in order to allow for numerous ways in which students might represent engineers doing engineering work. Students were asked to imagine themselves as engineers and then to create their Lego engineer. Next, on a notecard, they described the type of work their Lego engineer would be doing, at which point they were then asked to create this scene using Lego bricks. Finally, after completing their creations, students reflected on the meaning of what they built and verbally described their creation and the choices they made. While these reflections provide additional insight into students’ beliefs about who can be an engineer and what engineers do, they also provide students an opportunity to imagine and see themselves in the role of an engineer. This activity was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. This paper will describe the development of the activity as well as preliminary findings from pilot testing and use with elementary students participating in the overall research project. Potential implications and limitations will be described. 
    more » « less
  4. This project, titled Collective Argumentation Learning and Coding (CALC), aims to use the principles of collective argumentation to teach coding through appropriate reasoning. Creating and critiquing arguments as part of a coding activity promotes a more structured approach rather than the trial-and-error coding activity commonly used by novice programmers. Teaching coding via collective argumentation allows teachers to use methods that are already in use in mathematics and science instruction to teach coding, thus increasing the probability that it will be taught in conjunction with mathematics and science as regular parts of classroom instruction rather than relegated to an after-school or enrichment activity for only some students. Specific objectives of the CALC project are to - increase the attention that coding is given in the elementary classrooms taught by our participating teachers, and -direct students away from informal approaches (e.g.trial-and-error) to develop code to the more formal, structured approach recommended for novice programmers. Our research activities investigate teachers’ understanding of argumentation using the CALC concept and how the implementation of the CALC concept helps students (grades 3-5) learn how to code. The CALC approach supports the learning of coding by providing teachers with a formal, structured means to a) trace the growth of students’ understanding, and misunderstanding, of ideas (i.e., coding) as they form, b) facilitate students’ use of evidence, not opinion, to select a solution among multiple solutions (i.e., different sequencing of the code), and c) help each student realize she/he, as well as others, is a legitimate participant (i.e., a programmer) in the activity of developing, assessing and implementing an idea (e.g., coding of a robot). This paper/presentation discussed the first phase of an on-going investigation and focuses on a prototype graduate-level course designed for and taught to practicing elementary school teachers. The discussion outlines how the course impacted the participating teachers content knowledge of coding and their belief that coding can be made an integral part of everyday lessons, not as an add-on activity. 
    more » « less
  5. Abstract This study aimed to develop a valid and reliable instrument, the Mental Images of Scientists Questionnaire (MISQ), and use the instrument to examine Chinese students’ mental images of scientists’ characters across school levels, regions, living settings, and gender. The final version of theMISQconsisted of four constructs: scientists’ cognitive, affective, lifestyle, and job characters. The results showed that senior high school students gave higher scores for scientists’ cognitive character construct than junior high and elementary school students did. Students from eastern regions, which have a more highly developed economy, gave the highest scores on cognitive and affective character constructs of scientists. Students from western regions, which have a less developed economy, had a relatively negative impression of scientists. Students’ images of scientists’ affective, lifestyle, and job characters were positively correlated with their interests in pursuing scientific careers. Future research to explore the relationships between students’ mental images of scientists’ characters and students’ motivation to pursue science-related careers or to engage in scientific practices are recommended. 
    more » « less