skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Effective design principles for leakless strand displacement systems
Artificially designed molecular systems with programmable behaviors have become a valuable tool in chemistry, biology, material science, and medicine. Although information processing in biological regulatory pathways is remarkably robust to error, it remains a challenge to design molecular systems that are similarly robust. With functionality determined entirely by secondary structure of DNA, strand displacement has emerged as a uniquely versatile building block for cell-free biochemical networks. Here, we experimentally investigate a design principle to reduce undesired triggering in the absence of input (leak), a side reaction that critically reduces sensitivity and disrupts the behavior of strand displacement cascades. Inspired by error correction methods exploiting redundancy in electrical engineering, we ensure a higher-energy penalty to leak via logical redundancy. Our design strategy is, in principle, capable of reducing leak to arbitrarily low levels, and we experimentally test two levels of leak reduction for a core “translator” component that converts a signal of one sequence into that of another. We show that the leak was not measurable in the high-redundancy scheme, even for concentrations that are up to 100 times larger than typical. Beyond a single translator, we constructed a fast and low-leak translator cascade of nine strand displacement steps and a logic OR gate circuit consisting of 10 translators, showing that our design principle can be used to effectively reduce leak in more complex chemical systems.  more » « less
Award ID(s):
1718938 1213127 1317694 1652824
PAR ID:
10093584
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
52
ISSN:
0027-8424
Page Range / eLocation ID:
E12182 to E12191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA strand displacement cascades have proven to be a uniquely flexible and programmable primitive for constructing molecular logic circuits, smart structures and devices, and for systems with complex autonomously generated dynamics. Limiting their utility, however, strand displacement systems are susceptible to the spurious release of output even in the absence of the proper combination of inputs—so-called leak. A common mechanism for reducing leak involves clamping the ends of helices to prevent fraying, and thereby kinetically blocking the initiation of undesired displacement. Since a clamp must act as the incumbent toehold for toehold exchange, clamps cannot be stronger than a toehold. In this paper we systematize the properties of the simplest of strand displacement cascades (a translator) with toehold-size clamps. Surprisingly, depending on a few basic parameters, we find a rich and diverse landscape for desired and undesired properties and trade-offs between them. Initial experiments demonstrate a significant reduction of leak. 
    more » « less
  2. Ouldridge, Thomas E. ; Wickham, Shelley F.J. (Ed.)
    A barrier to wider adoption of molecular computation is the difficulty of implementing arbitrary chemical reaction networks (CRNs) that are robust and replicate the kinetics of designed behavior. DNA Strand Displacement (DSD) cascades have been a favored technology for this purpose due to their potential to emulate arbitrary CRNs and known principles to tune their reaction rates. Progress on leakless cascades has demonstrated that DSDs can be arbitrarily robust to spurious "leak" reactions when incorporating systematic domain level redundancy. These improvements in robustness result in slower kinetics of designed reactions. Existing work has demonstrated the kinetic and thermodynamic effects of sequence mismatch introduction and elimination during displacement. We present a systematic, sequence modification strategy for optimizing the kinetics of leakless cascades without practical cost to their robustness. An in-depth case study explores the effects of this optimization when applied to a typical leakless translator cascade. Thermodynamic analysis of energy barriers and kinetic experimental data support that DSD cascades can be fast and robust. 
    more » « less
  3. In contrast to electronic computation, chemical computation is noisy and susceptible to a variety of sources of error, which has prevented the construction of robust complex systems. To be effective, chemical algorithms must be designed with an appropriate error model in mind. Here we consider the model of chemical reaction networks that preserve molecular count (population protocols), and ask whether computation can be made robust to a natural model of unintended “leak” reactions. Our definition of leak is motivated by both the particular spurious behavior seen when implementing chemical reaction networks with DNA strand displacement cascades, as well as the unavoidable side reactions in any implementation due to the basic laws of chemistry. We develop a new “Robust Detection” algorithm for the problem of fast (logarithmic time) single molecule detection, and prove that it is robust to this general model of leaks. Besides potential applications in single molecule detection, the error-correction ideas developed here might enable a new class of robust-by-design chemical algorithms. Our analysis is based on a non-standard hybrid argument, combining ideas from discrete analysis of population protocols with classic Markov chain techniques. 
    more » « less
  4. DNA is an incredibly dense storage medium for digital data. However, computing on the stored information is expensive and slow, requiring rounds of sequencing, in silico computation, and DNA synthesis. Prior work on accessing and modifying data using DNA hybridization or enzymatic reactions had limited computation capabilities. Inspired by the computational power of “DNA strand displacement,” we augment DNA storage with “in-memory” molecular computation using strand displacement reactions to algorithmically modify data in a parallel manner. We show programs for binary counting and Turing universal cellular automaton Rule 110, the latter of which is, in principle, capable of implementing any computer algorithm. Information is stored in the nicks of DNA, and a secondary sequence-level encoding allows high-throughput sequencing-based readout. We conducted multiple rounds of computation on 4-bit data registers, as well as random access of data (selective access and erasure). We demonstrate that large strand displacement cascades with 244 distinct strand exchanges (sequential and in parallel) can use naturally occurring DNA sequence from M13 bacteriophage without stringent sequence design, which has the potential to improve the scale of computation and decrease cost. Our work merges DNA storage and DNA computing, setting the foundation of entirely molecular algorithms for parallel manipulation of digital information preserved in DNA.< 
    more » « less
  5. In molecular programming, the Chemical Reaction Network model is often used to describe real or hypothetical systems. Often, an interesting computational task can be done with a known hypothetical Chemical Reaction Network, but often such networks have no known physical implementation. One of the important breakthroughs in the field was that any Chemical Reaction Network can be physically implemented, approximately, using DNA strand displacement mechanisms. This allows us to treat the Chemical Reaction Network model as a programming language and the implementation schemes as its compiler. This also suggests that it would be useful to optimize the result of such a compilation, and in general to find effective ways to design better DNA strand displacement systems. We discuss DNA strand displacement systems in terms of "motifs", short sequences of elementary DNA strand displacement reactions. We argue that describing such motifs in terms of their inputs and outputs, then building larger systems out of the abstracted motifs, can be an efficient way of designing DNA strand displacement systems. We discuss four previously studied motifs in this abstracted way, and present a new motif based on cooperative 4-way strand exchange. We then show how Chemical Reaction Network implementations can be built out of abstracted motifs, discussing existing implementations as well as presenting two new implementations based on 4-way strand exchange, one of which uses the new cooperative motif. The new implementations both have two desirable properties not found in existing implementations, namely both use only at most 2-stranded DNA complexes for signal and fuel complexes and both are physically reversible. There are reasons to believe that those properties may make them more robust and energy-efficient, but at the expense of using more fuel complexes than existing implementation schemes. 
    more » « less