skip to main content


Title: Biotic Interactions Contribute to the Geographic Range Limit of an Annual Plant: Herbivory and Phenology Mediate Fitness beyond a Range Margin
Award ID(s):
1754299 1754157 1754026 1701072
NSF-PAR ID:
10093717
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The American Naturalist
ISSN:
0003-0147
Page Range / eLocation ID:
000 to 000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services. 
    more » « less
  2. The efficient light-driven fuel production from homogeneous photocatalytic systems is one promising avenue towards an alternative energy economy. However, electron transfer from a conventional photosensitizer to a catalyst is short-range and necessitates spatial proximity between them. Here we show that energetic hot electrons generated by Mn-doped semiconductor quantum dots (QDs) allow for long-range sensitization of Ni(cyclam)-based molecular catalysts, enabling photocatalytic reduction of CO 2 to CO without requiring chemical linkages between the QDs and catalyst molecules. Our results demonstrate the potential of hot electron sensitization in simplifying the design of hybrid catalyst systems while improving photocatalytic activity. 
    more » « less