skip to main content


Title: VERA: Popularizing Science Through AI
Citizen scientists have the potential to expand scientific research. The virtual research assistant called VERA empowers citizen scientists to engage in environmental science in two ways. First, it automatically generates simulations based on the conceptual models of ecological phenomena for repeated testing and feedback. Second, it leverages the Encyclopedia of Life biodiversity knowledgebase to support the process of model construction and revision.  more » « less
Award ID(s):
1636848
NSF-PAR ID:
10093907
Author(s) / Creator(s):
Date Published:
Journal Name:
LNCS
Volume:
10948
Page Range / eLocation ID:
31-35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Citizen scientist efforts, wherein members of the public who are not professional scientists participate in active research, have been shown to effectively engage the public in STEM fields and result in valuable data, essential to answering pressing research questions. However, most citizen scientist efforts have been centered in colleges of science, and a limited number have crossed into research areas important to chemical engineering fields. In this work we report on the results of a project to recruit high school and middle school students across Utah’s Salt Lake Valley as citizen scientists and potential engineering students who work in partnership with chemical engineering researchers in an effort to create a distributed online network of air quality sensors. Middle and high school students were trained by undergraduate mentors to monitor and maintain their own outdoor air quality sensor with the help of teaching materials that were co-developed with Breathe Utah, a local community group concerned with air quality. With the help of these tailored teaching modules, students learned about the science behind air quality research and the difficulties common to physical measurements to better prepare them to analyze their data. Once trained, students are expected to become semi-independent researchers in charge of monitoring and maintaining their piece of a larger air quality map. We describe in this work the hurdles inherent in citizen science engagement within a chemical engineering research program and the means to address them. We describe successful means of engaging classrooms, training citizen scientists, obtaining faculty buy-in within the confines of state curricular demands, and addressing school administration concerns. With this model, we have directly engaged over 1,000 high school and over 3,000 middle school students. The project has resulted in a growing network of citizen-maintained sensors that contributes to a real-time air quality map. Student scientists may also use the sensors to participate in active research or conduct science fair projects. Student response to this citizen scientist project, where it may be measured, has been enthusiastic and almost wholly positive. 
    more » « less
  2. Abstract

    Citizen science is personal. Participation is contingent on the citizens’ connection to a topic or to interpersonal relationships meaningful to them. But from the peer-reviewed literature, scientists appear to have an acquisitive data-centered relationship with citizens. This has spurred ethical and pragmatic criticisms of extractive relationships with citizen scientists. We suggest five practical steps to shift citizen-science research from extractive to relational, reorienting the research process and providing reciprocal benefits to researchers and citizen scientists. By virtue of their interests and experience within their local environments, citizen scientists have expertise that, if engaged, can improve research methods and product design decisions. To boost the value of scientific outputs to society and participants, citizen-science research teams should rethink how they engage and value volunteers.

     
    more » « less
  3. This paper describes an attempt to utilize paid citizen science in a research project that documented urban park usage during the early stages of the COVID-19 pandemic in two U.S. cities. Strategies used by the research team to recruit, pay, and evaluate the experiences of the 43 citizen scientists are discussed alongside key challenges in contemporary citizen science. A literature review suggests that successful citizen science projects foster diverse and inclusive participation; develop appropriate ways to compensate citizen scientists for their work; maximize opportunities for participant learning; and ensure high standards for data quality. In this case study, the selection process proved successful in employing economically vulnerable individuals, though the citizen scientist participants were disproportionately female, young, White, non-Hispanic, single, and college educated relative to the communities studied. The participants reported that the financial compensation provided by the study, similar in amount to the economic stimulus checks distributed simultaneously by the Federal government, were reasonable given the workload, and many used it to cover basic household needs. Though the study took place in a period of high economic risk, and more than 80% of the participants had never participated in a scientific study, the experience was rated overwhelmingly positive. Participants reported that the work provided stress relief, indicated they would consider participating in similar research in the future. Despite the vast majority never having engaged in most park stewardship activities, they expressed interest in learning more about park usage, mask usage in public spaces, and socio-economic trends in relation to COVID-19. Though there were some minor challenges in data collection, data quality was sufficient to publish the topical results in a peer-reviewed companion paper. Key insights on the logistical constraints faced by the research team are highlighted throughout the paper to advance the case for paid citizen science. 
    more » « less
  4. Benoit Lavraud (Ed.)
    The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities. 
    more » « less
  5. Building community with rural and underrepresented groups has been a challenge in the field of citizen science. At the University of Alaska Fairbanks, a team of scientists, educators, Extension professionals, and evaluators have joined efforts to take on this challenge across Alaska. The goals for Arctic Harvest-Public Participation in Scientific Research are to: 1) investigate how shifts in environmental conditions affect the fate of subsistence berries and timing of berry loss from plants in fall and winter across Alaska; and 2) improve the participation in and effectiveness of citizen science across diverse audiences, particularly at high latitudes where a high proportion of communities have populations underrepresented in STEM. We present the assets that collaboration across a land grant university brought to the table, and the Winterberry Citizen Science program design elements we have developed to engage our 1080+ volunteer berry citizen scientists ages three through elder across urban and rural, Indigenous and non-Indigenous, and formal and informal learning settings. Our interdisciplinary team developed and implemented a program that provides in-person or online support for berry monitoring and data collection, and accommodates different age levels and settings. We also developed and tested an innovative program model that weaves storytelling throughout the citizen science learning cycle, from berries stories from the larger community, to stories of the citizen science process, to stories developed from berry data being collected and applied to future scenarios in a changing climate. The variety of program modifications we created have been highly effective helping reach a variety of settings and age levels. In both informal and formal learning environments in our first two years of the program we have had 568 pre-K and elementary-aged (age 3-12), 424 secondary-aged (age 12-18) youth participants and 107 adults (ages 18+), with 44% of participants coming from groups underrepresented in STEM, and 100% of groups completing berry monitoring throughout the fall. These results highlight the importance of designing the citizen science program with cultural relevance, program delivery options, and relationships between participants and scientists, while remaining committed to making a substantial scientific contribution. 
    more » « less