A Nonlinear, “Sticky” Web of Study for Chemistry: A Graphical Curricular Tool for Teaching and Learning Chemistry Built upon the Interconnection of Core Chemical Principles
- Award ID(s):
- 1709370
- PAR ID:
- 10094489
- Date Published:
- Journal Name:
- Journal of Chemical Education
- Volume:
- 95
- Issue:
- 12
- ISSN:
- 0021-9584
- Page Range / eLocation ID:
- 2134 to 2140
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
To construct complex molecules and molecular devices, tiny, atomic-sized objects must be brought together and connected in a precise way. For better or for worse, this daunting task is still mostly done in a manner likened to putting Lego blocks in a washing machine and hoping that the quintillions of molecules somehow end up assembling themselves into the desired product, either by complete chance or under the guidance of other molecular-sized objects—i.e., catalysts. On page 298 of this issue, Albrecht et al. ( 1 ) show how a single molecule can be transformed into three distinct products depending on the voltage pulses from the tip of a scanning tunneling microscope (STM). Notably, the three products can be repeatedly interconverted with a high degree of control.more » « less
-
An in-silico exercise was developed for a general chemistry laboratory course at St. Bonaventure University in which students examined potential energy surfaces, molecular orbital diagrams, and how bond orders and Lewis structures are connected. Pre- and post-assessment data suggests that, though students learned from the exercise, they are not connecting the concepts of bond order, Lewis structures, and resonance. There was a statistically significant improvement in the assessment scores before and after the laboratory experiment, and there was no statistical difference between the post-assessment and the follow-up assessment, which occurred after students completed the lab report 1 week after the initial experiment. The data suggest an improved understanding of computational chemistry concepts as well as improvement in the individual concepts of resonance, Lewis structures, and bond orders. However, an assessment question connecting these concepts did not show an improvement. An additional questionnaire was conducted to explore this discrepancy. This study indicates that more investigation is necessary with regard to students’ ability to make logical connections among bond orders, Lewis structures, and resonance.more » « less
-
The virial equation of state (VEOS) provides a rigorous bridge between molecular interactions and thermodynamic properties. The past decade has seen renewed interest in the VEOS due to advances in theory, algorithms, computing power, and quality of molecular models. Now, with the emergence of increasingly accurate first-principles computational chemistry methods, and machine-learning techniques to generate potential-energy surfaces from them, VEOS is poised to play a larger role in modeling and computing properties. Its scope of application is limited to where the density series converges, but this still admits a useful range of conditions and applications, and there is potential to expand this range further. Recent applications have shown that for simple molecules, VEOS can provide first-principles thermodynamic property data that are competitive in quality with experiment. Moreover, VEOS provides a focused and actionable test of molecular models and first-principles calculations via comparison to experiment. This Perspective presents an overview of recent advances and suggests areas of focus for further progress.more » « less
An official website of the United States government

