skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decentralization in Bitcoin and Ethereum Networks.
Blockchain-based cryptocurrencies have demonstrated how to securely implement traditionally centralized systems, such as currencies, in a decentralized fashion. However, there have been few measurement studies on the level of decentralization they achieve in practice. We present a measurement study on various decentralization metrics of two of the leading cryptocurrencies with the largest market capitalization and user base, Bitcoin and Ethereum. We investigate the extent of decentralization by measuring the network resources of nodes and the interconnection among them, the protocol requirements affecting the operation of nodes, and the robustness of the two systems against attacks. In particular, we adapted existing internet measurement techniques and used the Falcon Relay Network as a novel measurement tool to obtain our data. We discovered that neither Bitcoin nor Ethereum has strictly better properties than the other. We also provide concrete suggestions for improving both systems.  more » « less
Award ID(s):
1704615
PAR ID:
10094537
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proc. of the Financial Cryptography and Data Security Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Darmont, J; Novikov, B.; Wrembel, R. (Ed.)
    Bitcoin [12] is a successful and interesting example of a global scale peer-to-peer cryptocurrency that integrates many techniques and protocols from cryptography, distributed systems, and databases. The main underlying data structure is blockchain, a scalable fully replicated structure that is shared among all participants and guarantees a consistent view of all user transactions by all participants in the system. In a blockchain, nodes agree on their shared states across a large network of untrusted participants. Although originally devised for cryptocurrencies, recent systems exploit its many unique features such as transparency, provenance, fault tolerance, and authenticity to support a wide range of distributed applications. Bitcoin and other cryptocurrencies use permissionless blockchains. In a permissionless blockchain, the network is public, and anyone can participate without a specific identity. Many other distributed applications, such as supply chain management and healthcare, are deployed on permissioned blockchains consisting of a set of known, identified nodes that still might not fully trust each other. This paper illustrates some of the main challenges and opportunities from a database perspective in the many novel and interesting application domains of blockchains. These opportunities are illustrated using various examples from recent research in both permissionless and permissioned blockchains. Two main themes unite the various examples: (1) the important role of distribution and consensus in managing large scale systems and (2) the need to tolerate malicious failures. The advent of cloud computing and large data centers shifted large scale data management infrastructures from centralized databases to distributed systems. One of the main challenges in designing distributed systems is the need for fault-tolerance. Cloud-based systems typically assume trusted infrastructures, since data centers are owned by the enterprises managing the data, and hence the design typically only assumes and tolerates crash failures. The advent of blockchain and the underlying premise that copies of the blockchain are distributed among untrusted entities has shifted the focus of fault-tolerance from tolerating crash failures to tolerating malicious failures. These interesting and challenging settings pose great opportunities for database researchers. 
    more » « less
  2. Bitcoin, Ethereum and other blockchain-based cryptocurrencies, as deployed today, cannot support more than several transactions per second. Off-chain payment channels, a “layer 2” solution, are a leading approach for cryptocurrency scaling. They enable two mutually distrustful parties to rapidly send payments between each other and can be linked together to form a payment network, such that payments between any two parties can be routed through the network along a path that connects them. We propose a novel payment channel protocol, called Sprites. The main advantage of Sprites compared with earlier protocols is a reduced “collateral cost,” meaning the amount of money × time that must be locked up before disputes are settled. In the Lightning Network and Raiden, a payment across a path of ` channels requires locking up collateral for Θ(`∆) time, where ∆ is the time to commit an on-chain transaction; every additional node on the path forces an increase in lock time. The Sprites construction provides a constant lock time, reducing the overall collateral cost to Θ(` + ∆). Our presentation of the Sprites protocol is also modular, making use of a generic state channel abstraction. Finally, Sprites improves on prior payment channel constructions by supporting partial withdrawals and deposits without any on-chain transactions. 
    more » « less
  3. null (Ed.)
    Abstract Cryptocurrencies play a major role in the global financial ecosystem. Their presence across different geopolitical corridors, including in repressive regimes, has been one of their striking features. In this work, we leverage this feature for bootstrapping Censorship Resistant communication. We conceptualize the notion of stego-bootstrapping scheme and its security in terms of rareness and security against chosencovertext attacks. We present MoneyMorph , a provably secure stego-bootstrapping scheme using cryptocurrencies. MoneyMorph allows a censored user to interact with a decoder entity outside the censored region, through blockchain transactions as rendezvous, to obtain bootstrapping information such as a censorshipresistant proxy and its public key. Unlike the usual bootstrapping approaches (e.g., emailing) with heuristic security, if any, MoneyMorph employs public-key steganography over blockchain transactions to ensure provable cryptographic security. We design rendezvous over Bitcoin, Zcash, Monero, and Ethereum, and analyze their effectiveness in terms of available bandwidth and transaction cost. With its highly cryptographic structure, we show that Zcash provides 1148 byte bandwidth per transaction costing less than 0.01 USD as fee. 
    more » « less
  4. Recent studies have shown that compromising Bitcoin’s peer-to-peer network is an effective way to disrupt the Bitcoin service. While many attack vectors have been uncovered such as BGP hijacking in the network layer and eclipse attack in the application layer, one significant attack vector that resides in the transport layer is largely overlooked. In this paper, we investigate the TCP vulnerabilities of the Bitcoin system and their consequences. We present Bijack, an off-path TCP hijacking attack on the Bitcoin network that is able to terminate Bitcoin connections or inject malicious data into the connections with only a few prior requirements and a limited amount of knowledge. This results in the Bitcoin network topology leakage, and the Bitcoin nodes isolation. 
    more » « less
  5. <italic>Abstract</italic> Cryptocurrencies and the underpinning blockchain technology have gained unprecedented public attention recently. In contrast to fiat currencies, transactions of cryptocurrencies, such as Bitcoin and Litecoin, are permanently recorded on distributed ledgers to be seen by the public. As a result, public availability of all cryptocurrency transactions allows us to create a complex network of financial interactions that can be used to study not only the blockchain graph, but also the relationship between various blockchain network features and cryptocurrency risk investment. We introduce a novel concept of chainlets, or blockchain motifs, to utilize this information. Chainlets allow us to evaluate the role of local topological structure of the blockchain on the joint Bitcoin and Litecoin price formation and dynamics. We investigate the predictive Granger causality of chainlets and identify certain types of chainlets that exhibit the highest predictive influence on cryptocurrency price and investment risk. More generally, while statistical aspects of blockchain data analytics remain virtually unexplored, the paper aims to highlight various emerging theoretical, methodological and applied research challenges of blockchain data analysis that will be of interest to the broad statistical community.The Canadian Journal of Statistics48: 561–581; 2020 © 2020 Statistical Society of Canada 
    more » « less