skip to main content


Title: Use of the Informatics for Integrating Biology and the Bedside (i2b2) Population to Test Serum Bilirubin Levels and Risk for Inflammatory Bowl Diseases and the Involvement of Uridine Glucuronosyltransferase Genes
Chronic inflammation associated with inflammatory bowel disease (IBD) results in increased oxidative stress that damages the colonic microenvironment. A low level of serum bilirubin, an endogenous antioxidant, has been associated with increased risk for Crohn's disease (CD), but no study has tested another common IBD ulcerative colitis (UC). Bilirubin is metabolized in the liver by uridine glucuronosyltransferase 1A1 (UGT1A1) exclusively. Genetic variants cause functional changes in UGT1A1 which result in hyperbilirubinemia, which can be toxic to tissues if untreated and results in a characteristic jaundiced appearance. Approximately 10% of the Caucasian population is homozygous for the microsatellite polymorphism UGT1A1*28, which results in increased total serum bilirubin levels due to reduced transcriptional efficiency of UGT1A1 and an overall 70% reduction in UGT1A1 enzymatic activity. The aim of this study was to examine whether bilirubin levels are associated with the risk for ulcerative colitis (UC). Using the Informatics for Integrating Biology and the Bedside (i2b2), a large case-control population was identified from a single tertiary care center, Penn State Hershey Medical Center (PSU). Similarly, a validation cohort was identified at Virginia Commonwealth University Medical Center. Logistic regression analysis was performed to determine the risk of developing UC with lower concentrations of serum bilirubin. From the PSU cohort, a subset of terminal ileum tissue was obtained at the time of surgical resection to analyze UGT1A1 gene expression (which encodes the enzyme responsible for bilirubin metabolism). Similar to CD patients, UC patients also demonstrated reduced levels of total serum bilirubin. Upon segregating serum bilirubin levels into quartiles, risk of UC increased with reduced concentrations of serum bilirubin. These results were confirmed in our validation cohort. UGT1A1 gene expression was up-regulated in the terminal ileum of a subset of UC patients. Lower levels of the antioxidant bilirubin may reduce the capability of UC patients to remove reactive oxygen species leading to an increase in intestinal injury. One potential explanation for these lower bilirubin levels may be up-regulation of UGT1A1 gene expression, which encodes the only enzyme involved in conjugating bilirubin. Therapeutics that reduce oxidative stress may be beneficial for these patients.  more » « less
Award ID(s):
1818693
NSF-PAR ID:
10094833
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
Page Range / eLocation ID:
529 to 529
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Latent Interacting Variable Effects (LIVE) modeling is a framework to integrate different types of microbiome multi-omics data by combining latent variables from single-omic models into a structured meta-model to determine discriminative, interacting multi-omics features driving disease status. We implemented and tested LIVE modeling in publicly available metagenomics and metabolomics datasets from Crohn’s Disease and Ulcerative Colitis patients. Here, LIVE modeling reduced the number of feature correlations from the original data set for CD and UC to tractable numbers and facilitated prioritization of biological associations between microbes, metabolites, enzymes and IBD status through the application of stringent thresholds on generated inferential statistics. We determined LIVE modeling confirmed previously reported IBD biomarkers and uncovered potentially novel disease mechanisms in IBD. LIVE modeling makes a distinct and complementary contribution to the current methods to integrate microbiome data to predict IBD status because of its flexibility to adapt to different types of microbiome multi-omics data, scalability for large and small cohort studies via reliance on latent variables and dimensionality reduction, and the intuitive interpretability of the linear meta-model integrating -omic data types. The results of LIVE modeling and the biological relationships can be represented in networks that connect local correlation structure of single omic data types with global community and omic structure in the latent variable VIP scores. This model arises as novel tool that allows researchers to be more selective about omic feature interaction without disrupting the structural correlation framework provided by sPLS-DA interaction effects modeling. It will lead to form testable hypothesis by identifying potential and unique interactions between metabolome and microbiome that must be considered for future studies. 
    more » « less
  2. Background Digital health is poised to transform health care and redefine personalized health. As Internet and mobile phone usage increases, as technology develops new ways to collect data, and as clinical guidelines change, all areas of medicine face new challenges and opportunities. Inflammatory bowel disease (IBD) is one of many chronic diseases that may benefit from these advances in digital health. This review intends to lay a foundation for clinicians and technologists to understand future directions and opportunities together. Objective This review covers mobile health apps that have been used in IBD, how they have fit into a clinical care framework, and the challenges that clinicians and technologists face in approaching future opportunities. Methods We searched PubMed, Scopus, and ClinicalTrials.gov to identify mobile apps that have been studied and were published in the literature from January 1, 2010, to April 19, 2019. The search terms were (“mobile health” OR “eHealth” OR “digital health” OR “smart phone” OR “mobile app” OR “mobile applications” OR “mHealth” OR “smartphones”) AND (“IBD” OR “Inflammatory bowel disease” OR “Crohn's Disease” (CD) OR “Ulcerative Colitis” (UC) OR “UC” OR “CD”), followed by further analysis of citations from the results. We searched the Apple iTunes app store to identify a limited selection of commercial apps to include for discussion. Results A total of 68 articles met the inclusion criteria. A total of 11 digital health apps were identified in the literature and 4 commercial apps were selected to be described in this review. While most apps have some educational component, the majority of apps focus on eliciting patient-reported outcomes related to disease activity, and a few are for treatment management. Significant benefits have been seen in trials relating to education, quality of life, quality of care, treatment adherence, and medication management. No studies have reported a negative impact on any of the above. There are mixed results in terms of effects on office visits and follow-up. Conclusions While studies have shown that digital health can fit into, complement, and improve the standard clinical care of patients with IBD, there is a need for further validation and improvement, from both a clinical and patient perspective. Exploring new research methods, like microrandomized trials, may allow for more implementation of technology and rapid advancement of knowledge. New technologies that can objectively and seamlessly capture remote data, as well as complement the clinical shift from symptom-based to inflammation-based care, will help the clinical and health technology communities to understand the full potential of digital health in the care of IBD and other chronic illnesses. 
    more » « less
  3. e20551 Background: Enzyme activity is at the center of all biological processes. When these activities are misregulated by changes in sequence, expression, or activity, pathologies emerge. Misregulation of protease enzymes such as Matrix Metalloproteinases and Cathepsins play a key role in the pathophysiology of cancer. We describe here a novel class of graphene-based, cost effective biosensors that can detect altered protease activation in a blood sample from early stage lung cancer patients. Methods: The Gene Expression Omnibus (GEO) tool was used to identify proteases differentially expressed in lung cancer and matched normal tissue. Biosensors were assembled on a graphene backbone annotated with one of a panel of fluorescently tagged peptides. The graphene quenches fluorescence until the peptide is either cleaved by active proteases or altered by post-translational modification. 19 protease biosensors were evaluated on 431 commercially collected serum samples from non-lung cancer controls (69%) and pathologically confirmed lung cancer cases (31%) tested over two independent cohorts. Serum was incubated with each of the 19 biosensors and enzyme activity was measured indirectly as a continuous variable by a fluorescence plate reader. Analysis was performed using Emerge, a proprietary predictive and classification modeling system based on massively parallel evolving “Turing machine” algorithms. Each analysis stratified allocation into training and testing sets, and reserved an out-of-sample validation set for reporting. Results: 256 clinical samples were initially evaluated including 35% cancer cases evenly distributed across stages I (29%), II (26%), III (24%) and IV (21%). The case controls included common co-morbidies in the at-risk population such as COPD, chronic bronchitis, and benign nodules (19%). Using the Emerge classification analysis, biosensor biomarkers alone (no clinical factors) demonstrated Sensitivity (Se.) = 92% (CI 82%-99%) and Specificity (Sp.) = 82% (CI 69%-91%) in the out-of-sample set. An independent cohort of 175 clinical cases (age 67±8, 52% male) focused on early detection (26% cancer, 70% Stage I, 30% Stage II/III) were similarly evaluated. Classification showed Se. = 100% (CI 79%-100%) and Sp. = 93% (CI 80%-99%) in the out-of-sample set. For the entire dataset of 175 samples, Se. = 100% (CI 92%-100%) and Sp. = 97% (CI 92%-99%) was observed. Conclusions: Lung cancer can be treated if it is diagnosed when still localized. Despite clear data showing screening for lung cancer by Low Dose Computed Tomography (LDCT) is effective, screening compliance remains very low. Protease biosensors provide a cost effective additional specialized tool with high sensitivity and specificity in detection of early stage lung cancer. A large prospective trial of at-risk smokers with follow up is being conducted to evaluate a commercial version of this assay. 
    more » « less
  4. Abstract

    Inflammatory bowel disease (IBD) includes Crohn’s disease and ulcerative colitis. Each disease is characterized by a diverse set of potential manifestations, which determine patients’ disease phenotype. Current understanding of phenotype determinants is limited, despite increasing prevalence and healthcare costs. Diagnosis and monitoring of disease requires invasive procedures, such as endoscopy and tissue biopsy. Here we report signatures of heterogeneity between disease diagnoses and phenotypes. Using mass cytometry, we analyze leukocyte subsets, characterize their function(s), and examine gut-homing molecule expression in blood and intestinal tissue from healthy and/or IBD subjects. Some signatures persist in IBD despite remission, and many signatures are highly represented by leukocytes that express gut trafficking molecules. Moreover, distinct systemic and local immune signatures suggest patterns of cell localization in disease. Our findings highlight the importance of gut tropic leukocytes in circulation and reveal that blood-based immune signatures differentiate clinically relevant subsets of IBD.

     
    more » « less
  5. Abstract Objective

    Arctic GraylingThymallus arcticusare Holarctically distributed, with a single native population in the conterminous United States occurring in the Big Hole River, Montana, where water temperatures can fluctuate throughout the year from 8°C to 18°C. A gradual increase in mean water temperature has been reported in this river over the past 20 years due to riparian habitat changes and climate change effects. We hypothesized that exposing Arctic Grayling to higher temperatures would result in lower survival, decreased growth, and increased stress responses.

    Methods

    Over a 144‐day trial, Arctic Grayling juveniles were subjected to water temperatures ranging from 8°C to 26°C to measure the effects on growth, survival, gene expression, and antioxidant enzyme activity.

    Result

    Fish growth increased with increasing water temperature up to 18°C, beyond which survival was reduced. Fish did not survive at temperatures above 22°C. In response to temperatures above 16°C, 3.0‐fold and 1.5‐fold increases in gene expression were observed for superoxide dismutase (SOD) and glutathione peroxidase (GPx), respectively, but no changes were seen in the gene expression ratio of heat shock protein 70 to heat shock protein 90. Activities of the SOD and GPx enzymes also rose at temperatures above 16°C, indicating heightened oxidative stress. Catalase gene expression and enzyme activity decreased with rising temperatures, suggesting a preference for the GPx pathway, as GPx could also be providing help with lipid peroxidation. An increase in thiobarbituric acid reactive substances was also recorded, which corresponded with rising temperatures.

    Conclusion

    Our findings thus underscore the vulnerability of Arctic Grayling to minor changes in water temperature. Further increases in mean water temperature could significantly compromise the survival of Arctic Grayling in the Big Hole River.

     
    more » « less