skip to main content


Title: RE-WIND: Architectural Design Studio and the Re-Purposing of Wind Turbine Blades
This paper discusses the opening moves of an international multidisciplinary research project involving researchers from Ireland, Northern Ireland and the US, aiming to address the global problem of end-of-life disposal of wind turbine blades. The problem is one of enormous scale on several levels: a typical 2.0 MW turbine has three 50m long blades containing around 20 tonnes of fibre reinforced plastic (FRP). It is estimated that by 2050, 39.8 million tonnes of material from the global wind industry will await disposal. Whilst land-fill is the current means of disposal, the nature of the materials used in the composite construction of wind blades (glass and carbon fibres, resins, foams) means it unsustainable. Hence, the project sets out to deploy innovative design and logistical concepts for reusing and recycling these blades. The project begins within an innovative joint design studio, staged between Queen’s University Belfast and the Georgia Institute of Technology, where architecture students will, within the highly-constrained contexts of the blade properties and the potential reuse sites, systematically generate, filter, and prototype a selection of proposals, reusing the decommissioned wind turbine blades in buildings, infrastructure, landscape, and public art. The paper analyzes the potential and challenges of considering this highly constrained and yet multidisciplinary problem within the context of a Masters level Architecture studio. The paper concludes with an analysis of how outcome-driven design problems challenge traditional design studio cultures, acknowledging the need to make processes and ideas more explicit in order to categorise, analyse, rank and refine proposed architectural solutions.  more » « less
Award ID(s):
1701413
NSF-PAR ID:
10094869
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SEEDS 2018: Sustainable Ecological Engineering Design for Society
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The very rapid growth in wind energy technology in the last 15 years has led to a rapid growth in the amount of non–biodegradable, thermosetting FRP composite materials used in wind turbine blades that will need to be managed of in the near future. A typical 2.0 MW turbine with three 50 m blades has approximately 20 tonnes of FRP material and an 8 MW turbine has approximately 80 tonnes of FRP material (1 MW ~ 10 tonnes of FRP). Calculations show that 4.2 million tonnes will need to be managed globally by 2035 and 16.3 million tonnes by 2055 if wind turbine construction continues at current levels and with current technology. Three major categories of end-of-life (EOL) options are possible – disposal, recovery and reuse. Reuse options are the primary focus of this paper since landfilling and incineration are environmentally harmful and recovery recycling methods are not economical. The current work reports on different architectural and structural options for reusing parts of wind turbine blades in new or retrofitted housing projects. Large-sized FRP pieces that can be salvaged from the turbine blades and potentially useful in infrastructure projects where harsh environmental conditions (water and high humidity) exist. Their noncorrosive properties make them durable construction materials. The approach presented is to cut the decommissioned wind turbine blades into segments that can be repurposed for structural and architectural applications for affordable housing projects. The geographical focus of the designs presented in this paper is in the coastal region of the Yucatan on the Gulf of Mexico where low quality masonry block informal housing is vulnerable to severe hurricanes and flooding. In what follows, a prototype 100m long wind blade model provided by Sandia National Laboratories is used as a demonstration to show how a wind blade can be broken down into parts, thus making it possible to envision architectural applications for the different wind blade segments. 
    more » « less
  2. The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 4.2 million tons of waste from wind blades will need to be managed globally by 2035, increasing to 16.3 million tons by 2055. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents a method for generating the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory. 
    more » « less
  3. The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 16.8 million tons of waste from wind blades will need to be managed globally by 2030, increasing to 39.8 million tons by 2050. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents an example of the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory. 
    more » « less
  4. This paper describes repurposing projects using decommissioned wind turbine blades in bridges conducted under a multinational research project entitled “Re-Wind”. Repurposing is defined by the Re-Wind Network as the re-engineering, redesigning, and remanufacturing of a wind blade that has reached the end of its life on a turbine and taken out of service and then reused as a load-bearing structural element in a new structure (e.g., bridge, transmission pole, sound barrier, seawall, shelter). The issue of end-of-life of wind turbine blades is becoming a significant sustainability concern for wind turbine manufacturers, many of whom have committed to the 2030 or 2040 sustainability goals that include zero-waste for their products. Repurposing is the most sustainable end-of-life solution for wind turbine blades from an environmental, economic, and social perspective. The Network has designed and constructed two full-size pedestrian/cycle bridges—one on a greenway in Cork, Ireland and the other in a quarry in Draperstown, Northern Ireland, UK. The paper describes the design, testing, and construction of the two bridges and provides cost data for the bridges. Two additional bridges that are currently being designed for construction in Atlanta, GA, USA are also described. The paper also presents a step-by-step procedure for designing and building civil structures using decommissioned wind turbine blades. The steps are: project planning and funding, blade sourcing, blade geometric characterization, material testing, structural testing, designing, cost estimating, and construction.

     
    more » « less
  5. Fiber reinforced polymer (FRP) composite materials have been used in a variety of civil and infrastructure applications since the early1980s, including in wind turbine blades. The world is now confronting the problem of how to dispose of decommissioned blades in an environmentally sustainable manner. One proposed solution is to repurpose the blades for use in new structures. One promising repurposing application is in pedestrian and cycle bridges. This paper reports on the characterization of a 13.4-m long FRP wind blade manufactured by LM Windpower (Kolding, Demark) in 1994. Two blades of this type were used as girders for a pedestrian bridge on a greenway (walking and biking trail) in Cork, Ireland. The as-received geometric, material, and structural properties of the 27 year-old blade were obtained for use in the structural design of the bridge. The material tests included physical (volume fraction and laminate architecture) and mechanical (tension and compression) tests at multiple locations. Full-scale flexural testing of a 4-m long section of the blade between 7 and 11 m from the root of the blade was performed to determine the load-deflection behavior, ultimate capacity, strain history, and failure modes when loaded to failure. Key details of the testing and the results are provided. The results of the testing revealed that the FRP material is still in excellent condition and that the blade has the strength and stiffness in flexure to serve as a girder for the bridge constructed.

     
    more » « less