skip to main content

Title: High-speed nano-polarimetry for real-time plasmonic bio-imaging
Plasmonic nanoparticles are excellent nonbleaching probes for bio-imaging. Due to their anisotropic properties, polarization analysis of individual nanoparticles allows for revealing orientational information, plasmon mode assignment, and the local microenvironment. Previous implementations utilize mechanical rotation of conventional polarizers to align the polarization angles with specific axes of nanoparticles. However, the manufacturing defects of the polarizer (e.g., non-parallelism) limit the measurement stability (e.g., beam wobbling) in polarimetric imaging, while the mechanical rotation limits the measurement speed, and thus hinders accurate, real-time acquisition of individual nanoparticles. Here, we demonstrate a high-speed nano-polarimetric system for stable plasmonic bio-imaging by integrating our voltage-tunable polarizer (VTP) into a microscope. The angular rotation of the polarization (0∼π) can be realized by applying voltage on the VTP. We show that our voltage-tunable system offers high extinction ratio (∼up to 250), and uniform transmission (∼55%) over a large input power range (<5% deviation for input power from 50 μW to ∼20 mW). Meanwhile, the transmission polarization can be rapidly tuned with a response time up to 50 ms. Compared to conventional polarizers, our system is able to provide reproducible and high-speed polarimetric images of individual nanoparticles with sub-pixel spatial precision. Such a polarimetric nanoimaging system could be a useful tool for real-time single nanoparticle bio-imaging with both high stability and time resolution.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Plasmonics in Biology and Medicine XV
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required. 
    more » « less
  2. Abstract

    Optical manipulation and imaging of nano‐objects with nanometer precision is highly desirable for nanomaterial and biological studies due to inherent noninvasiveness. However, time constraints and current segregated experimental systems for nanoimaging and nanomanipulation limits real‐time super‐resolution imaging with spatially enhanced manipulation. Here, an integrated nanoscopic correction (iNC) method to enable multimodal nanomanipulation‐nanoimaging is reported. The iNC consists of a multimodal voltage‐tunable power modulator, polarization rotator, and polarizer. Using the iNC, plasmonic nano‐objects which are below the diffraction limit and which can be distinguished by direct observation without post processing are demonstrated. Furthermore, such direct observations with enhanced nanometer spatial stability and millisecond high speed are shown. Precise trapping and rapid rotation of gold nanorods with the iNC are demonstrated successfully. With non‐invasive post‐processing free nanoimaging and nanomanipulation, it is anticipated that the iNC will make contributions in the nanomaterial and biological sciences requiring precision optics.

    more » « less
  3. Abstract

    Polarimetric imaging has a wide range of applications for uncovering features invisible to human eyes and conventional imaging sensors. Chip-integrated, fast, cost-effective, and accurate full-Stokes polarimetric imaging sensors are highly desirable in many applications, which, however, remain elusive due to fundamental material limitations. Here we present a chip-integratedMetasurface-based Full-StokesPolarimetricImaging sensor (MetaPolarIm) realized by integrating an ultrathin (~600 nm) metasurface polarization filter array (MPFA) onto a visible imaging sensor with CMOS compatible fabrication processes. The MPFA is featured with broadband dielectric-metal hybrid chiral metasurfaces and double-layer nanograting polarizers. This chip-integrated polarimetric imaging sensor enables single-shot full-Stokes imaging (speed limited by the CMOS imager) with the most compact form factor, records high measurement accuracy, dual-color operation (green and red) and a field of view up to 40 degrees. MetaPolarIm holds great promise to enable transformative applications in autonomous vision, industry inspection, space exploration, medical imaging and diagnosis.

    more » « less
  4. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.


    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1


    more » « less
  5. Reconfigurability is one of the most critical properties of nanophotonic systems and, consequently, methods for enabling a significant degree of functionality are highly sought after. However, dynamically responsive control in top‐down fabricated photonic structures often requires extreme conditions and yields moderate modulation capability. In sharp contrast to top‐down methods, directed self‐assembly of micro‐ and nanoparticles offers a distinct avenue for reconfigurable photonics. In the present work, gold nanowire lattices are formed via electric field directed assembly in order to take advantage of their collective optical properties. The lattices are reconfigured on‐demand between two different functional states, in the form of broadband polarizers. By selectively switching the electric field between two orthogonal electrode pairs, a maximum transmission contrast of ≈50% is observed in the near‐infrared regime. Moreover, the reconfigurable transmission spectra, which are highly dependent on the nanowire size and electric field conditions, are reversible. The demonstrated proof‐of‐concept nanowire lattice polarizer provides potential for electrically reconfigurable photonic devices such as ultra‐compact polarization components, electro‐optic switches, and on‐chip modulators.

    more » « less