skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Immersed Finite Element Method for Elliptic Interface Problems with Multi-Domain and Triple Junction Points
Interface problems have wide applications in modern scientific research. Obtaining accurate numerical solutions of multi-domain problems involving triple junction conditions remains a significant challenge. In this paper, we develop an efficient finite element method based on non-body-fitting meshes for solving multi-domain elliptic interface problems. We follow the idea of immersed finite element by modifying local basis functions to accommodate interface conditions. We enrich the local finite element space by adding new basis functions for handling non-homogeneous flux jump. The numerical scheme is symmetric and positive definite. Numerical experiments are provided to demonstrate the features of our method.  more » « less
Award ID(s):
1720425
PAR ID:
10094959
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in applied mathematics and mechanics
ISSN:
2070-0733
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Immersed boundary methods are high-order accurate computational tools used to model geometrically complex problems in computational mechanics. While traditional finite element methods require the construction of high-quality boundary-fitted meshes, immersed boundary methods instead embed the computational domain in a structured background grid. Interpolation-based immersed boundary methods augment existing finite element software to non-invasively implement immersed boundary capabilities through extraction. Extraction interpolates the structured background basis as a linear combination of Lagrange polynomials defined on a foreground mesh, creating an interpolated basis that can be easily integrated by existing methods. This work extends the interpolation-based immersed isogeometric method to multi-material and multi-physics problems. Beginning from level-set descriptions of domain geometries, Heaviside enrichment is implemented to accommodate discontinuities in state variable fields across material interfaces. Adaptive refinement with truncated hierarchically refined B-splines (THB-splines) is used to both improve interface geometry representations and to resolve large solution gradients near interfaces. Multi-physics problems typically involve coupled fields where each field has unique discretization requirements. This work presents a novel discretization method for coupled problems through the application of extraction, using a single foreground mesh for all fields. Numerical examples illustrate optimal convergence rates for this method in both 2D and 3D, for partial differential equations representing heat conduction, linear elasticity, and a coupled thermo-mechanical problem. The utility of this method is demonstrated through image-based analysis of a composite sample, where in addition to circumventing typical meshing difficulties, this method reduces the required degrees of freedom when compared to classical boundary-fitted finite element methods. 
    more » « less
  2. An effective multi-element simulation methodology for quantum eigenvalue problems is investigated. The approach is derived from a reduced-order model based on a data-driven learning algorithm, together with the concept of domain decomposition. The approach partitions the simulation domain of a quantum eigenvalue problem into smaller subdomains that, referred to as elements, could be the building blocks for quantum structures of interest. In this quantum element method (QEM), each element is projected onto a functional space represented by a set of basis functions (or modes) that are generated from proper orthogonal decomposition (POD). To construct a POD model for a large domain, these projected elements can be combined together, and the interior penalty discontinuous Galerkin method is applied to achieve the interface continuity and stabilize the numerical solution. The POD is able to optimize the basis functions specifically tailored to the geometry and parametric variations of the problem and can therefore substantially reduce the degree of freedom (DoF) needed to solve the Schrödinger equation. To understand the fundamental issues of the QEM, demonstrations in this study focus on examining the accuracy and DoF of the QEM influenced by the training settings for generation of POD modes, selection of the penalty number, suppression of interface discontinuities, structure size and complexity, etc. It has been shown that the QEM is able to achieve a substantial reduction in the DoF with a high accuracy even beyond the training conditions for the POD modes if the penalty number is selected within an appropriate range. 
    more » « less
  3. Abstract We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart–Thomas, and Brezzi–Douglas–Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. 
    more » « less
  4. In this paper, we consider unsaturated filtration in heterogeneous porous media with rough surface topography. The surface topography plays an important role in determining the flow process and includes multiscale features. The mathematical model is based on the Richards’ equation with three different types of boundary conditions on the surface: Dirichlet, Neumann, and Robin boundary conditions. For coarse-grid discretization, the Generalized Multiscale Finite Element Method (GMsFEM) is used. Multiscale basis functions that incorporate small scale heterogeneities into the basis functions are constructed. To treat rough boundaries, we construct additional basis functions to take into account the influence of boundary conditions on rough surfaces. We present numerical results for two-dimensional and three-dimensional model problems. To verify the obtained results, we calculate relative errors between the multiscale and reference (fine-grid) solutions for different numbers of multiscale basis functions. We obtain a good agreement between fine-grid and coarse-grid solutions. 
    more » « less
  5. Immersed finite element methods are designed to solve interface problems on interface- unfitted meshes. However, most of the study, especially analysis, is mainly limited to the two-dimension case. In this paper, we provide an a priori analysis for the trilinear immersed finite element method to solve three-dimensional elliptic interface problems on Cartesian grids consisting of cuboids. We establish the trace and inverse inequalities for trilinear IFE functions for interface elements with arbitrary interface-cutting configuration. Optimal a priori error estimates are rigorously proved in both energy and L2 norms, with the constant in the error bound independent of the interface location and its dependence on coefficient contrast explicitly specified. Numerical examples are provided not only to verify our theoretical results but also to demonstrate the applicability of this IFE method in tackling some real-world 3D interface models. 
    more » « less