skip to main content


Title: Situated Mapping of Sequential Instructions to Actions with Single-step Reward Observation
We propose a learning approach for mapping context-dependent sequential instructions to actions. We address the problem of discourse and state dependencies with an attention-based model that considers both the history of the interaction and the state of the world. To train from start and goal states without access to demonstrations, we propose SESTRA, a learning algorithm that takes advantage of single-step reward observations and immediate expected reward maximization. We evaluate on the SCONE domains, and show absolute accuracy improvements of 9.8%-25.3% across the domains over approaches that use high-level logical representations.  more » « less
Award ID(s):
1656998
PAR ID:
10095009
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Volume:
1
Page Range / eLocation ID:
2072-2082
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Algorithmic decisions made by machine learning models in high-stakes domains may have lasting impacts over time. However, naive applications of standard fairness criterion in static settings over temporal domains may lead to delayed and adverse effects. To understand the dynamics of performance disparity, we study a fairness problem in Markov decision processes (MDPs). Specifically, we propose return parity, a fairness notion that requires MDPs from different demographic groups that share the same state and action spaces to achieve approximately the same expected time-discounted rewards. We first provide a decomposition theorem for return disparity, which decomposes the return disparity of any two MDPs sharing the same state and action spaces into the distance between group-wise reward functions, the discrepancy of group policies, and the discrepancy between state visitation distributions induced by the group policies. Motivated by our decomposition theorem, we propose algorithms to mitigate return disparity via learning a shared group policy with state visitation distributional alignment using integral probability metrics. We conduct experiments to corroborate our results, showing that the proposed algorithm can successfully close the disparity gap while maintaining the performance of policies on two real-world recommender system benchmark datasets. 
    more » « less
  2. Applying reinforcement learning (RL) to sparse reward domains is notoriously challenging due to insufficient guiding signals. Common RL techniques for addressing such domains include (1) learning from demonstrations and (2) curriculum learning. While these two approaches have been studied in detail, they have rarely been considered together. This paper aims to do so by introducing a principled task-phasing approach that uses demonstrations to automatically generate a curriculum sequence. Using inverse RL from (suboptimal) demonstrations we define a simple initial task. Our task phasing approach then provides a framework to gradually increase the complexity of the task all the way to the target task, while retuning the RL agent in each phasing iteration. Two approaches for phasing are considered: (1) gradually increasing the proportion of time steps an RL agent is in control, and (2) phasing out a guiding informative reward function. We present conditions that guarantee the convergence of these approaches to an optimal policy. Experimental results on 3 sparse reward domains demonstrate that our task-phasing approaches outperform state-of-the-art approaches with respect to asymptotic performance.

     
    more » « less
  3. With the development of sensing and communica- tion technologies in networked cyber-physical systems (CPSs), multi-agent reinforcement learning (MARL)-based methodolo- gies are integrated into the control process of physical systems and demonstrate prominent performance in a wide array of CPS domains, such as connected autonomous vehicles (CAVs). However, it remains challenging to mathematically characterize the improvement of the performance of CAVs with commu- nication and cooperation capability. When each individual autonomous vehicle is originally self-interest, we can not assume that all agents would cooperate naturally during the training process. In this work, we propose to reallocate the system’s total reward efficiently to motivate stable cooperation among autonomous vehicles. We formally define and quantify how to reallocate the system’s total reward to each agent under the proposed transferable utility game, such that communication- based cooperation among multi-agents increases the system’s total reward. We prove that Shapley value-based reward reallocation of MARL locates in the core if the transferable utility game is a convex game. Hence, the cooperation is stable and efficient and the agents should stay in the coalition or the cooperating group. We then propose a cooperative policy learning algorithm with Shapley value reward reallocation. In experiments, compared with several literature algorithms, we show the improvement of the mean episode system reward of CAV systems using our proposed algorithm. 
    more » « less
  4. Recent reinforcement learning (RL) approaches have shown strong performance in complex domains such as Atari games, but are often highly sample inefficient. A common approach to reduce interaction time with the environment is to use reward shaping, which involves carefully designing reward functions that provide the agent intermediate rewards for progress towards the goal. However, designing appropriate shaping rewards is known to be difficult as well as time-consuming. In this work, we address this problem by using natural language instructions to perform reward shaping. We propose the LanguagE-Action Reward Network (LEARN), a framework that maps free-form natural language instructions to intermediate rewards based on actions taken by the agent. These intermediate language-based rewards can seamlessly be integrated into any standard reinforcement learning algorithm. We experiment with Montezuma’s Revenge from the Atari Learning Environment, a popular benchmark in RL. Our experiments on a diverse set of 15 tasks demonstrate that, for the same number of interactions with the environment, language-based rewards lead to successful completion of the task 60 % more often on average, compared to learning without language. 
    more » « less
  5. In multi-agent reinforcement learning (MARL), it is challenging for a collection of agents to learn complex temporally extended tasks. The difficulties lie in computational complexity and how to learn the high-level ideas behind reward functions. We study the graph-based Markov Decision Process (MDP), where the dynamics of neighboring agents are coupled. To learn complex temporally extended tasks, we use a reward machine (RM) to encode each agent’s task and expose reward function internal structures. RM has the capacity to describe high-level knowledge and encode non-Markovian reward functions. We propose a decentralized learning algorithm to tackle computational complexity, called decentralized graph-based reinforcement learning using reward machines (DGRM), that equips each agent with a localized policy, allowing agents to make decisions independently based on the information available to the agents. DGRM uses the actor-critic structure, and we introduce the tabular Q-function for discrete state problems. We show that the dependency of the Q-function on other agents decreases exponentially as the distance between them increases. To further improve efficiency, we also propose the deep DGRM algorithm, using deep neural networks to approximate the Q-function and policy function to solve large-scale or continuous state problems. The effectiveness of the proposed DGRM algorithm is evaluated by three case studies, two wireless communication case studies with independent and dependent reward functions, respectively, and COVID-19 pandemic mitigation. Experimental results show that local information is sufficient for DGRM and agents can accomplish complex tasks with the help of RM. DGRM improves the global accumulated reward by 119% compared to the baseline in the case of COVID-19 pandemic mitigation. 
    more » « less