skip to main content


Title: Complementary Vantage Points: Integrating Hydrology and Economics for Sociohydrologic Knowledge Generation
Abstract

Because human and environmental systems in the Anthropocene are increasingly coupled, hydrologists and economists often find themselves studying the same systems from different vantage points. Here we argue that synthesis across economics and hydrology can help address two pressing sociohydrologic challenges: actionable prediction and the generation of transferable knowledge from place‐based studies. Specifically, we review (1) empirical methods and (2) theoretical approaches from economics and connect the two through a proposed iterative framework. First, we find that empirical methods for statistical analysis of natural and quasi‐experiments in economics can be leveraged to distinguish causal relations from mere correlations in complex and data scarce systems, which can help address the challenge of sociohydrologic prediction. Second, we find that economic theories based on rational choice can be used to decipher known paradoxes in water resources, which can help address the challenge of sociohydrologic knowledge generation. In both empirical and theoretical domains, specialized knowledge in hydrology remains critical to properly applying techniques from economics to coupled human‐water systems. We propose that linkages between the two fields highlight a large potential for interaction.

 
more » « less
Award ID(s):
1824951 1639318
NSF-PAR ID:
10453371
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
55
Issue:
4
ISSN:
0043-1397
Page Range / eLocation ID:
p. 2549-2571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. . Granting agencies invest millions of dollars on the generation and analysis of data, making these products extremely valuable. However, without sufficient annotation of the methods used to collect and analyze the data, the ability to reproduce and reuse those products suffers. This lack of assurance of the quality and credibility of the data at the different stages in the research process essentially wastes much of the investment of time and funding and fails to drive research forward to the level of potential possible if everything was effectively annotated and disseminated to the wider research community. In order to address this issue for the Hawai'i Established Program to Stimulate Competitive Research (EPSCoR) project, a water science gateway was developed at the University of Hawai‘i (UH), called the ‘Ike Wai Gateway. In Hawaiian, ‘Ike means knowledge and Wai means water. The gateway supports research in hydrology and water management by providing tools to address questions of water sustainability in Hawai‘i. The gateway provides a framework for data acquisition, analysis, model integration, and display of data products. The gateway is intended to complement and integrate with the capabilities of the Consortium of Universities for the Advancement of Hydrologic Science's (CUAHSI) Hydroshare by providing sound data and metadata management capabilities for multi-domain field observations, analytical lab actions, and modeling outputs. Functionality provided by the gateway is supported by a subset of the CUAHSI’s Observations Data Model (ODM) delivered as centralized web based user interfaces and APIs supporting multi-domain data management, computation, analysis, and visualization tools to support reproducible science, modeling, data discovery, and decision support for the Hawai'i EPSCoR ‘Ike Wai research team and wider Hawai‘i hydrology community. By leveraging the Tapis platform, UH has constructed a gateway that ties data and advanced computing resources together to support diverse research domains including microbiology, geochemistry, geophysics, economics, and humanities, coupled with computational and modeling workflows delivered in a user friendly web interface with workflows for effectively annotating the project data and products. Disseminating results for the ‘Ike Wai project through the ‘Ike Wai data gateway and Hydroshare makes the research products accessible and reusable. 
    more » « less
  2. Abstract

    Nutrients, such as nitrogen and phosphorus, provide vital support for human life, but overloading nutrients to the Earth system leads to environmental concerns, such as water and air pollution on local scales and climate change on the global scale. With an urgent need to feed the world's growing population and the growing concern over nutrient pollution and climate change, sustainable nutrient management has become a major challenge for this century. To address this challenge, the growing body of research on nutrient budgets, namely the nutrient inputs and outputs of a given system, has provided great opportunities for improving scientific knowledge of the complex nutrient cycles in the coupled human and natural systems. This knowledge can help inform stakeholders, such as farmers, consumers, and policy makers, on their decisions related to nutrient management. This paper systematically reviews major challenges, as well as opportunities, in defining, quantifying, and applying nutrient budgets. Nutrient budgets have been defined for various systems with different research or application purposes, but the lack of consistency in the system definition and its budget terms has hindered intercomparison among studies and experience‐sharing among researchers and regions. Our review synthesizes existing nutrient budgets under a framework with five systems (i.e.,Soil‐Plantsystem,Animalsystem,Animal‐Plant‐Soilsystem,Agro‐Foodsystem, andLandscapesystem) and four spatial scales (i.e., Plot and Farm, Watershed, National, and Global scales). We define these systems and identify issues of nitrogen and phosphorus budgets within each. Few nutrient budgets have been well balanced at any scale, due to the large uncertainties in the quantification of several major budget terms. The type and level of challenges vary across spatial scales and also differ among nutrients. Improvement in nutrient budgets will rely not only on the technological advancement of scientific observations and models but also on better bookkeeping of human activity data. While some nutrient budget terms may need decades, or even centuries, of research to be well quantified within desirable levels of uncertainties, it is imperative to effectively communicate to interested stakeholders our understanding of nutrient budgets so that scientists and a variety of stakeholders can work together to address the sustainable nutrient management challenge of this century.

     
    more » « less
  3. Abstract

    Climate change threatens water resources in snowmelt‐dependent regions by altering the fraction of snow and rain and spurring an earlier snowmelt season. The bulk of hydrological research has focused on forecasting response in streamflow volumes and timing to a shrinking snowpack; however, the degree to which subsurface storage offsets the loss of snow storage in various alpine geologic settings, i.e. the hydrogeologic buffering capacity, is still largely unknown. We address this research need by assessing the affects of climate change on storage and runoff generation for two distinct hydrogeologic settings present in alpine systems: a low storage granitic and a greater storage volcanic hillslope. We use a physically based integrated hydrologic model fully coupled to a land surface model to run a base scenario and then three progressive warming scenarios, and account for the shifts in each component of the water budget. For hillslopes with greater water retention, the larger storage volcanic hillslope buffered streamflow volumes and timing, but at the cost of greater reductions in groundwater storage relative to the low storage granite hillslope. We found that the results were highly sensitive to the unsaturated zone retention parameters, which in the case of alpine systems can be a mix of matrix or fracture flow. The presence of fractures and thus less retention in the unsaturated zone significantly decreased the reduction in recharge and runoff for the volcanic hillslope in climate warming scenarios. This approach highlights the importance of incorporating physically based subsurface flow in to alpine hydrology models, and our findings provide ways forward to arrive at a conceptual model that is both consistent with geology and hydrologic principles. Copyright © 2016 John Wiley & Sons, Ltd.

     
    more » « less
  4. High-quality source code comments are valuable for software development and maintenance, however, code often contains low-quality comments or lacks them altogether. We name such source code comments as suboptimal comments. Such suboptimal comments create challenges in code comprehension and maintenance. Despite substantial research on low-quality source code comments, empirical knowledge about commenting practices that produce suboptimal comments and reasons that lead to suboptimal comments are lacking. We help bridge this knowledge gap by investigating (1)  independent comment changes (ICCs) —comment changes committed independently of code changes—which likely address suboptimal comments, (2) commenting guidelines, and (3) comment-checking tools and comment-generating tools, which are often employed to help commenting practice—especially to prevent suboptimal comments. We collect 24M+ comment changes from 4,392 open-source GitHub Java repositories and find that ICCs widely exist. The ICC ratio —proportion of ICCs among all comment changes—is ~15.5%, with 98.7% of the repositories having ICC. Our thematic analysis of 3,533 randomly sampled ICCs provides a three-dimensional taxonomy for what is changed (four comment categories and 13 subcategories), how it changed (six commenting activity categories), and what factors are associated with the change (three factors). We investigate 600 repositories to understand the prevalence, content, impact, and violations of commenting guidelines. We find that only 15.5% of the 600 sampled repositories have any commenting guidelines. We provide the first taxonomy for elements in commenting guidelines: where and what to comment are particularly important. The repositories without such guidelines have a statistically significantly higher ICC ratio, indicating the negative impact of the lack of commenting guidelines. However, commenting guidelines are not strictly followed: 85.5% of checked repositories have violations. We also systematically study how developers use two kinds of tools, comment-checking tools and comment-generating tools, in the 4,392 repositories. We find that the use of Javadoc tool is negatively correlated with the ICC ratio, while the use of Checkstyle has no statistically significant correlation; the use of comment-generating tools leads to a higher ICC ratio. To conclude, we reveal issues and challenges in current commenting practice, which help understand how suboptimal comments are introduced. We propose potential research directions on comment location prediction, comment generation, and comment quality assessment; suggest how developers can formulate commenting guidelines and enforce rules with tools; and recommend how to enhance current comment-checking and comment-generating tools. 
    more » « less
  5. Abstract

    Understanding phase transition between the liquid and gaseous states has gained significant interest, and has been ubiquitously observed in many places ranging from natural systems to water–energy nexus and thermal management applications. Phase transition phenomena at liquid–vapor interfaces are greatly governed by intermolecular‐level kinetics, which requires the use of empirical parameters in continuum‐level relations to explain the discrete nature of molecular particles. Despite its significance, it has been a great challenge to find detailed expressions of empirical parameters such as accommodation coefficients, which represent the probabilities for phase transition of liquid or vapor molecules at the interface. Here, direct statistical measurements of accommodation coefficients are reported by tracking the trajectories of liquid and vapor molecules in molecular simulations. The measurements reveal that evaporation and condensation coefficients are different by ≈50%, whereas they have been assumed to be equal in most previous studies. Then, the indirect measurement method is studied from a perspective of theoretical genetics based on the diffusion approximation. A good agreement between two approaches suggests that diffusion approximation can contribute to provide empirical parameters with a cost‐effective method.

     
    more » « less