skip to main content

Title: Heterogeneous upper mantle structure beneath the Ross Sea Embayment and Marie Byrd Land, West Antarctica, revealed by P-wave tomography
We present an upper mantle P-wave velocity model for the Ross Sea Embayment (RSE) region of West Antarctica, constructed by inverting relative P-wave travel-times from 1881 teleseismic earthquakes recorded by two temporary broadband seismograph deployments on the Ross Ice Shelf, as well as by regional ice- and rock-sited seismic stations surrounding the RSE. Faster upper mantle P-wave velocities (∼ +1%) characterize the eastern part of the RSE, indicating that the lithosphere in this part of the RSE may not have been reheated by mid-to-late Cenozoic rifting that affected other parts of the Late Cretaceous West Antarctic Rift System. Slower upper mantle velocities (∼ −1%) characterize the western part of the RSE over a ∼500 km-wide region, extending from the central RSE to the Transantarctic Mountains (TAM). Within this region, the model shows two areas of even slower velocities (∼ −1.5%) centered beneath Mt. Erebus and Mt. Melbourne along the TAM front. We attribute the broader region of slow velocities mainly to reheating of the lithospheric mantle by Paleogene rifting, while the slower velocities beneath the areas of recent volcanism may reflect a Neogene-present phase of rifting and/or plume activity associated with the formation of the Terror Rift. Beneath the Ford more » Ranges and King Edward VII Peninsula in western Marie Byrd Land, the P-wave model shows lateral variability in upper mantle velocities of ±0.5% over distances of a few hundred km. The heterogeneity in upper mantle velocities imaged beneath the RSE and western Marie Byrd Land, assuming no significant variation in mantle composition, indicates variations in upper mantle temperatures of at least 100◦C. These temperature variations could lead to differences in surface heat flow of ∼ ±10 mW/m2 and mantle viscosity of 102 Pa s regionally across the study area, possibly influencing the stability of the West Antarctic Ice Sheet by affecting basal ice conditions and glacial isostatic adjustment. « less
Award ID(s):
Publication Date:
Journal Name:
Earth and planetary science letters
Sponsoring Org:
National Science Foundation
More Like this
  1. With the ongoing discussion of Earth structure under West Antarctica and how it relates to the extension and volcanism of the area, we explore the possibility of a hydrated or thermally perturbed mantle underneath the region. Using P-wave receiver functions, we focus on the Mantle Transition Zone (MTZ) and how its thickness fluctuates from the global average (240-260 km). Prior studies have explored the West Antarctic regions of Marie Byrd Land and the West Antarctic Rift, but we expand this to include ~3-5 years of recent, additional seismic data from the Amundsen Sea and Pine Island Bay regions. Several years of additional data from the Ronne-Fichtner Ice Shelf, Ellsworth Land, and Marie Byrd Land regions will help provide a more complete picture of the mantle transition zone. Data for this study was obtained from IRIS for earthquakes of a 5.5 magnitude or greater. We use an iterative, time domain deconvolution method, filtered with Gaussian widths of 0.5, 0.75, and 1.0. All events within their respective Gaussian filter have undergone quality check by removing waveforms that have lower than 85% fit and visually checking for clear outliers. We migrate the receiver functions to depth and stack, using both single station stackingmore »and common conversion point (CCP) stacking. We migrate the CCP stacks assuming both 1D (AK-135) and 3D velocity models throughout the region. Preliminary results from single-station stacks beneath the Thurston Island and Amundsen Sea regions suggest that the MTZ thickness is similar to the global average and the depth to the transition zone appears to be depressed, with average transition zone boundaries appearing around 430 and 680 km. If the MTZ is thinner than the global average, it may be an indication for high temperature thermal anomalies or a plume under West Antarctica that may help explain the history of extension and uplift there. These results could be useful for glacial isostatic adjustment and/or geothermal heat flux models that attempt to understand ice sheet history and stability.« less
  2. Brittle faults in the southern Ford Ranges of Marie Byrd Land, West Antarctica, provide unique opportunity to study fluid-rock interactions in the West Antarctic Rift System and the role of crustal fluids during regional-scale faulting. This fault array contains steep, NNW-striking, normal-oblique slip faults and sub-vertical WNW-ESE strike-oblique faults. \ Faults at Mt. Douglass, Mt. Dolber, and Lewissohn Nunatak display strongly aligned tourmaline, indicating syntectonic mineralization; surfaces in one location feature distinctive mirror surfaces, suggestive of formation during seismic slip. Tourmaline has been demonstrated to resist chemical and isotopic re-equilibration during even high-temperature metamorphism, and to maintain a record of conditions during formation, therefore oxygen isotope compositions of tourmaline and quartz pairs may elucidate crustal conditions (e.g. temperatures and fluid-rock ratios) and fluids sources. Analyzed tourmaline and quartz were separated from the upper ~2mm of the fault surfaces; host rocks are tourmaline-free. Tourmaline 18O ratios (n=4) fall within a range of +9.2 to +10.4 ± 0.1 ‰ VSMOW (average 9.7‰, StDev = 0.7). Paired quartz yield 18O values of +11.1 to +10.3 ± 0.1 ‰; ∆Qtz-Trm values between 1.3 and 2.0 may reflect an inability of quartz to equilibrate during tourmaline crystallization. Equilibrium between quartz and tourmaline would suggest temperaturesmore »of formation in excess of 550°C. Relative isotopic homogeneity between sites suggests similar fluid conditions were present across the region and supports field evidence for that the structures form a regional fault array. Geometric and kinematic relationships suggest a link to deeper level shears hosting muscovite, and sillimanite with garnet. On-going investigation includes O isotope analyses of these shears, as well as analysis of H and B isotopes in tourmaline, which will better characterize the relationship between the deeper crustal shears with the brittle fault array, and the fluid sources and metasomatic processes of regional fault systems. Furthermore, temporal constraints on tourmaline mineralization will establish whether faulting is associated with Cretaceous intracontinental extension of the West Antarctic rift system (Siddoway 2008) or a crustal response to Neogene mantle delamination beneath the South Pole region (Shen et al 2018).« less
  3. Abstract The deployment of seismic stations and the development of ambient noise tomography and new analysis methods provide an opportunity for higher resolution imaging of Antarctica. Here we review recent seismic structure models and describe their implications for the dynamics and history of the Antarctic upper mantle. Results show that most of East Antarctica is underlain by continental lithosphere to depths of ∼ 200 km. The thickest lithosphere is found in a band 500-1000 km west of the Transantarctic Mountains, representing the continuation of cratonic lithosphere with Australian affinity beneath the ice. Dronning Maud Land and the Lambert Graben show much thinner lithosphere, consistent with Phanerozoic lithospheric disruption. The Transantarctic Mountains mark a sharp boundary between cratonic lithosphere and the warmer upper mantle of West Antarctica. In the Southern Transantarctic Mountains, cratonic lithosphere has been replaced by warm asthenosphere, giving rise to Cenozoic volcanism and an elevated mountainous region. The Marie Byrd Land volcanic dome is underlain by slow seismic velocities extending through the transition zone, consistent with a mantle plume. Slow velocity anomalies beneath the coast from the Amundsen Sea Embayment to the Antarctic Peninsula likely result from upwelling of warm asthenosphere during subduction of the Antarctic-Phoenix spreading center.
  4. Outcrops of brittle faults are rare in Marie Byrd Land, West Antarctica, because fault damage zones commonly undergo enhanced erosion and form bedrock troughs occupied by glacier ice. Where exposures do exist, faults yield information about regional strain in the West Antarctic Rift System (WARS) and may host minerals that contain a record of the temperature and chemistry of fluids during regional-scale faulting. In MBL’s southern Ford Ranges, bordering Ross Sea, a distinctive fault array was sampled that hosts tourmaline and quartz, a mineral-pair that can provide temperature and composition of fault-associated fluids, using 18O. Host rocks are tourmaline-free. At three separate sites, fault surfaces display strongly aligned tourmaline, suggesting that mineralization occurred during tectonism. One site features highly polished, or mirrored, surfaces, a characteristic that may indicate tourmaline precipitation during seismic slip. The orientation and kinematics of the high angle faults are NNW-striking: normal-slip, and WNW-ESE striking: right-lateral strike-slip. The timing of mineralization is yet to be determined, but viable possibilities are that the faults formed during broad intracontinental extension during formation of Ross Embayment in the Cretaceous, or during development of deep, narrow basins beneath the RIS grounding zone, in the Neogene (newly detected, see Tankersley et al.,more »this meeting). Once formed, tourmaline is resistant to chemical and isotopic re-equilibration, and therefore can retain a record of its conditions during formation. We used oxygen isotope compositions of tourmaline and quartz pairs to investigate temperatures, fluid-rock ratios, and fluid sources, with bearing on fault-localized flux of fluids and geothermal heat. Analyzed tourmaline and quartz were separated from the upper ~2mm of the fault surfaces, as well as quartz separated from host rock in the same hand samples. Tourmaline 18O ratios (n=4) fall within a range of +9.2 to +10.4 ± 0.1 ‰ VSMOW (average 9.7‰, StDev = 0.7). Paired quartz yield 18O values of +11.1 to +10.3 ± 0.1 ‰. Relative isotopic homogeneity between sites suggests similar fluid conditions were present across the region and supports field evidence for that the structures form a regional fault array. ∆Qtz-Trm values fall between 1.3 and 2.0, and 18O of quartz in faults closely resembles 18O of host rock quartz. We tentatively determine the water oxygen isotope ratio as greater than ~7.7 ‰. Plutonic-metamorphic associations in the immediate region, and comparisons with similar faults elsewhere (i.e. Isola d’Elba, Italy), suggest temperatures as high as 500°C for the fluids that circulated into the faults. The data are interpreted to show that brittle faults provided pathways for hot fluids derived from mid-crustal processes to make their way to shallow crustal depths. 18O values indicate magmatic and/or metamorphic fluid sources, with minor to no introduction of meteoric fluids. Tourmaline-quartz pairs did not attain equilibrium, likely due to tourmaline’s rapid crystallization. On-going investigation includes analysis of H and B isotopes in tourmaline, which will better characterize the relationship between fault-hosted and mid-crustal fluids.« less
  5. The Amundsen Sea sector of Antarctica has long been considered the most vulnerable part of the West Antarctic Ice Sheet (WAIS) because of the great water depth at the grounding line, a subglacial bed seafloor deepening toward the interior of the continent, and the absence of substantial ice shelves. Glaciers in this configuration are thought to be susceptible to rapid or runaway retreat. Ice flowing into the Amundsen Sea Embayment is undergoing the most rapid changes of any sector of the Antarctic ice sheets outside the Antarctic Peninsula, including substantial grounding-line retreat over recent decades, as observed from satellite data. Recent models suggest that a threshold leading to the collapse of WAIS in this sector may have been already crossed and that much of the ice sheet could be lost even under relatively moderate greenhouse gas emission scenarios. Drill cores from the Amundsen Sea provide tests of several key questions about controls on ice sheet stability. The cores offer a direct offshore record of glacial history in a sector that is exclusively influenced by ice draining the WAIS, which allows clear comparisons between the WAIS history and low-latitude climate records. Today, relatively warm (modified) Circumpolar Deep Water (CDW) is impingingmore »onto the Amundsen Sea shelf and causing melting under ice shelves and at the grounding line of the WAIS in most places. Reconstructions of past CDW intrusions can assess the ties between warm water upwelling and large-scale changes in past grounding-line positions. Carrying out these reconstructions offshore from the drainage basin that currently has the most substantial negative mass balance of ice anywhere in Antarctica is thus of prime interest to future predictions. The scientific objectives for this expedition are built on hypotheses about WAIS dynamics and related paleoenvironmental and paleoclimatic conditions. The main objectives are: 1. To test the hypothesis that WAIS collapses occurred during the Neogene and Quaternary and, if so, when and under which environmental conditions; 2. To obtain ice-proximal records of ice sheet dynamics in the Amundsen Sea that correlate with global records of ice-volume changes and proxy records for atmospheric and ocean temperatures; 3. To study the stability of a marine-based WAIS margin and how warm deepwater incursions control its position on the shelf; 4. To find evidence for the earliest major grounded WAIS advances onto the middle and outer shelf; 5. To test the hypothesis that the first major WAIS growth was related to the uplift of the Marie Byrd Land dome. International Ocean Discovery Program (IODP) Expedition 379 completed two very successful drill sites on the continental rise of the Amundsen Sea. Site U1532 is located on a large sediment drift, now called the Resolution Drift, and it penetrated to 794 m with 90% recovery. We collected almost-continuous cores from recent age through the Pleistocene and Pliocene and into the upper Miocene. At Site U1533, we drilled 383 m (70% recovery) into the more condensed sequence at the lower flank of the same sediment drift. The cores of both sites contain unique records that will enable study of the cyclicity of ice sheet advance and retreat processes as well as ocean-bottom water circulation and water mass changes. In particular, Site U1532 revealed a sequence of Pliocene sediments with an excellent paleomagnetic record for high-resolution climate change studies of the previously sparsely sampled Pacific sector of the West Antarctic margin. Despite the drilling success at these sites, the overall expedition experienced three unexpected difficulties that affected many of the scientific objectives: 1. The extensive sea ice on the continental shelf prevented us from drilling any of the proposed shelf sites. 2. The drill sites on the continental rise were in the path of numerous icebergs of various sizes that frequently forced us to pause drilling or leave the hole entirely as they approached the ship. The overall downtime caused by approaching icebergs was 50% of our time spent on site. 3. A medical evacuation cut the expedition short by 1 week. Recovery of core on the continental rise at Sites U1532 and U1533 cannot be used to indicate the extent of grounded ice on the shelf or, thus, of its retreat directly. However, the sediments contained in these cores offer a range of clues about past WAIS extent and retreat. At Sites U1532 and U1533, coarse-grained sediments interpreted to be ice-rafted debris (IRD) were identified throughout all recovered time periods. A dominant feature of the cores is recorded by lithofacies cyclicity, which is interpreted to represent relatively warmer periods variably characterized by sediments with higher microfossil abundance, greater bioturbation, and higher IRD concentrations alternating with colder periods characterized by dominantly gray laminated terrigenous muds. Initial comparison of these cycles to published late Quaternary records from the region suggests that the units interpreted to be records of warmer time intervals in the core tie to global interglacial periods and the units interpreted to be deposits of colder periods tie to global glacial periods. Cores from the two drill sites recovered sediments of dominantly terrigenous origin intercalated or mixed with pelagic or hemipelagic deposits. In particular, Site U1533, which is located near a deep-sea channel originating from the continental slope, contains graded silts, sands, and gravels transported downslope from the shelf to the rise. The channel is likely the pathway of these sediments transported by turbidity currents and other gravitational downslope processes. The association of lithologic facies at both sites predominantly reflects the interplay of downslope and contouritic sediment supply with occasional input of more pelagic sediment. Despite the lack of cores from the shelf, our records from the continental rise reveal the timing of glacial advances across the shelf and thus the existence of a continent-wide ice sheet in West Antarctica during longer time periods since at least the late Miocene. Cores from both sites contain abundant coarse-grained sediments and clasts of plutonic origin transported either by downslope processes or by ice rafting. If detailed provenance studies confirm our preliminary assessment that the origin of these samples is from the plutonic bedrock of Marie Byrd Land, their thermochronological record will potentially reveal timing and rates of denudation and erosion linked to crustal uplift. The chronostratigraphy of both sites enables the generation of a seismic sequence stratigraphy for the entire Amundsen Sea continental rise, spanning the area offshore from the Amundsen Sea Embayment westward along the Marie Byrd Land margin to the easternmost Ross Sea through a connecting network of seismic lines.« less