Abstract Floral nectar, an important resource for pollinators, is inhabited by microbes such as yeasts and bacteria, which have been shown to influence pollinator preference. Dynamic and complex plant-pollinator-microbe interactions are likely to be affected by a rapidly changing climate, as each player has their own optimal growth temperatures and phenological responses to environmental triggers, such as temperature. To understand how warming due to climate change is influencing nectar microbial communities, we incubated a natural nectar microbial community at different temperatures and assessed the subsequent nectar chemistry and preference of the common eastern bumble bee, Bombus impatiens . The microbial community in floral nectar is often species-poor, and the cultured Brassica rapa nectar community was dominated by the bacterium Fructobacillus . Temperature increased the abundance of bacteria in the warmer treatment. Bumble bees preferred nectar inoculated with microbes, but only at the lower, ambient temperature. Warming therefore induced an increase in bacterial abundance which altered nectar sugars and led to significant differences in pollinator preference.
more »
« less
Nectar Analysis Throughout the Genus Nicotiana Suggests Conserved Mechanisms of Nectar Production and Biochemical Action
- Award ID(s):
- 1339246
- PAR ID:
- 10095382
- Date Published:
- Journal Name:
- Frontiers in Plant Science
- Volume:
- 9
- ISSN:
- 1664-462X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Floral nectar is frequently colonised by microbes. However, nectar microbial communities are typically species‐poor and dominated by few cosmopolitan genera. One hypothesis is that nectar constituents may act as environmental filters. We tested how five non‐sugar nectar compounds as well as elevated sugar impacted the growth of 12 fungal and bacterial species isolated from nectar, pollinators, and the environment. We hypothesised that nectar isolated microbes would have the least growth suppression. Additionally, to test if nectar compounds could affect the outcome of competition between microbes, we grew a subset of microbes in co‐culture across a subset of treatments. We found that some compounds such as H2O2suppressed microbial growth across many but not all microbes tested. Other compounds were more specialised in the microbes they impacted. As hypothesised, the nectar specialist yeastMetschnikowia reukaufiiwas unaffected by most nectar compounds assayed. However, many non‐nectar specialist microbes remained unaffected by nectar compounds thought to reduce microbial growth. Our results show that nectar chemistry can influence microbial communities but that microbe‐specific responses to nectar compounds are common. Nectar chemistry also affected the outcome of species interactions among microbial taxa, suggesting that non‐sugar compounds can affect microbial community assembly in flowers.more » « less
-
‘Pollination syndromes’, where convergent floral signals reflect selection from a functional pollinator group, are often characterized by physical features, yet floral rewards such as nectar may also reflect selection from pollinators. We asked whether nectar chemistry shows evidence of convergence across functional pollinator groups, i.e. a ‘chemical pollination syndrome’. We used untargeted metabolomics to compare nectar and leaf chemical profiles across 19 bee‐ and bird‐syndrome species, focusing on Salvia spp. (Lamiaceae), selected to maximize switching events between pollination syndromes.We found that independently derived bird‐syndrome nectar showed convergence on nectar traits distinct from bee‐syndrome nectar, primarily driven by the composition and concentration of alkaloid profiles. We did not find evidence for ‘passive leaking’ of nectar compounds from leaves since metabolite abundances were uncorrelated across tissues and many nectar metabolites were not present in leaves. Nectar and leaf metabolomes were strongly decoupled from phylogenetic relationships within Salvia. These results suggest that functional pollinator groups may drive the evolution of floral reward chemistry, consistent with our ‘chemical pollination syndrome’ hypothesis and indicative of selection by pollinators, but we also consider alternative explanations. In addition, our results support the notion that nectar chemistry can be decoupled from that of other tissues.more » « less
An official website of the United States government

