skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration
Misregulation of the signaling axis formed by the receptor tyrosine kinase (RTK) EphA2 and its ligand, ephrinA1, causes aberrant cell-cell contacts that contribute to metastasis. Solid tumors are characterized by an acidic extracellular medium. We intend to take advantage of this tumor feature to design new molecules that specifically target tumors. We created a novel pH-dependent transmembrane peptide, TYPE7, by altering the sequence of the transmembrane domain of EphA2. TYPE7 is highly soluble and interacts with the surface of lipid membranes at neutral pH, while acidity triggers transmembrane insertion. TYPE7 binds to endogenous EphA2 and reduces Akt phosphorylation and cell migration as effectively as ephrinA1. Interestingly, we found large differences in juxtamembrane tyrosine phosphorylation and the extent of EphA2 clustering when comparing TYPE7 with activation by ephrinA1. This work shows that it is possible to design new pH-triggered membrane peptides to activate RTK and gain insights on its activation mechanism.  more » « less
Award ID(s):
1753060
NSF-PAR ID:
10095393
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
7
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cell signaling by receptor protein tyrosine kinases (RTKs) is tightly controlled by the counterbalancing actions of receptor protein tyrosine phosphatases (RPTPs). Due to their role in attenuating the signal‐initiating potency of RTKs, RPTPs have long been viewed as therapeutic targets. However, the development of activators of RPTPs has remained limited. We previously reported that the homodimerization of a representative member of the RPTP family (protein tyrosine phosphatase receptor J or PTPRJ) is regulated by specific transmembrane (TM) residues. Disrupting this interaction by single point mutations promotes PTPRJ access to its RTK substrates (e.g., EGFR and FLT3), reduces RTK's phosphorylation and downstream signaling, and ultimately antagonizes RTK‐driven cell phenotypes. Here, we designed and tested a series of first‐in‐class pH‐responsive TM peptide agonists of PTPRJ that are soluble in aqueous solution but insert as a helical TM domain in lipid membranes when the pH is lowered to match that of the acidic microenvironment of tumors. The most promising peptide reduced EGFR's phosphorylation and inhibited cancer cell EGFR‐driven migration and proliferation, similar to the PTPRJ's TM point mutations. Developing tumor‐selective and TM‐targeting peptide binders of critical RPTPs could afford a potentially transformative approach to studying RPTP's selectivity mechanism without requiring less specific inhibitors and represent a novel class of therapeutics against RTK‐driven cancers.

     
    more » « less
  2. The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase (RTK) commonly targeted for inhibition by anticancer therapeutics. Current therapeutics target EGFR’s kinase domain or extracellular region. However, these types of inhibitors are not specific for tumors over healthy tissue and therefore cause undesirable side effects. Our lab has recently developed a new strategy to regulate RTK activity by designing a peptide that specifically binds to the transmembrane (TM) region of the RTK to allosterically modify kinase activity. These peptides are acidity-responsive, allowing them to preferentially target acidic environments like tumors. We have applied this strategy to EGFR and created the PET1 peptide. We observed that PET1 behaves as a pH-responsive peptide that modulates the configuration of the EGFR TM through a direct interaction. Our data indicated that PET1 inhibits EGFR-mediated cell migration. Finally, we investigated the mechanism of inhibition through molecular dynamics simulations, which showed that PET1 sits between the two EGFR TM helices; this molecular mechanism was additionally supported by AlphaFold-Multimer predictions. We propose that the PET1-induced disruption of native TM interactions disturbs the conformation of the kinase domain in such a way that it inhibits EGFR’s ability to send migratory cell signals. This study is a proof-of-concept that acidity-responsive membrane peptide ligands can be generally applied to RTKs. In addition, PET1 constitutes a viable approach to therapeutically target the TM of EGFR. 
    more » « less
  3. Eph receptors are ubiquitous class of transmembrane receptors that mediate cell-cell communication, proliferation, differentiation, and migration. EphA1 receptors specifically play an important role in angiogenesis, fetal development, and cancer progression; however, studies of this receptor can be challenging as its ligand, ephrinA1, binds and activates several EphA receptors simultaneously. Optogenetic strategies could be applied to circumvent this requirement for ligand activation and enable selective activation of the EphA1 subtype. In this work, we designed and tested several iterations of an optogenetic EphA1 - Cryptochrome 2 (Cry2) fusion, investigating their capacity to mimic EphA1-dependent signaling in response to light activation. We then characterized the key cell signaling target of MAPK phosphorylation activated in response to light stimulation. The optogenetic regulation of Eph receptor RTK signaling without the need for external stimulus promises to be an effective means of controlling individual Eph receptor-mediated activities and creates a path forward for the identification of new Eph-dependent functions 
    more » « less
  4. Receptor tyrosine kinases (RTKs) are major signaling hubs in metazoans, playing crucial roles in cell proliferation, migration, and differentiation. However, few tools are available to measure the activity of a specific RTK in individual living cells. Here, we present pYtags, a modular approach for monitoring the activity of a user-defined RTK by live-cell microscopy. pYtags consist of an RTK modified with a tyrosine activation motif that, when phosphorylated, recruits a fluorescently labeled tandem SH2 domain with high specificity. We show that pYtags enable the monitoring of a specific RTK on seconds-to-minutes time scales and across subcellular and multicellular length scales. Using a pYtag biosensor for epidermal growth factor receptor (EGFR), we quantitatively characterize how signaling dynamics vary with the identity and dose of activating ligand. We show that orthogonal pYtags can be used to monitor the dynamics of EGFR and ErbB2 activity in the same cell, revealing distinct phases of activation for each RTK. The specificity and modularity of pYtags open the door to robust biosensors of multiple tyrosine kinases and may enable engineering of synthetic receptors with orthogonal response programs. 
    more » « less
  5. Tyrosine kinase receptor (RTK) ligation and dimerization is a key mechanism for translating external cell stimuli into internal signaling events. This process is critical to several key cell and physiological processes, such as in angiogenesis and embryogenesis, among others. While modulating RTK activation is a promising therapeutic target, RTK signaling axes have been shown to involve complicated interactions between ligands and receptors both within and across different protein families. In angiogenesis, for example, several signaling protein families, including vascular endothelial growth factors and platelet-derived growth factors, exhibit significant cross-family interactions that can influence pathway activation. Computational approaches can provide key insight to detangle these signaling pathways but have been limited by the sparse knowledge of these cross-family interactions. Here, we present a framework for studying known and potential non-canonical interactions. We constructed generalized models of RTK ligation and dimerization for systems of two, three and four receptor types and different degrees of cross-family ligation. Across each model, we developed parameter-space maps that fully determine relative pathway activation for any set of ligand-receptor binding constants, ligand concentrations and receptor concentrations. Therefore, our generalized models serve as a powerful reference tool for predicting not only known ligand: Receptor axes but also how unknown interactions could alter signaling dimerization patterns. Accordingly, it will drive the exploration of cross-family interactions and help guide therapeutic developments across processes like cancer and cardiovascular diseases, which depend on RTK-mediated signaling. 
    more » « less