skip to main content


Title: Impacts of thermal mismatches on chytrid fungus Batrachochytrium dendrobatidis prevalence are moderated by life stage, body size, elevation and latitude
Abstract

Global climate change is increasing the frequency of unpredictable weather conditions; however, it remains unclear how species‐level and geographic factors, including body size and latitude, moderate impacts of unusually warm or cool temperatures on disease. Because larger and lower‐latitude hosts generally have slower acclimation times than smaller and higher‐latitude hosts, we hypothesised that their disease susceptibility increases under ‘thermal mismatches’ or differences between baseline climate and the temperature during surveying for disease. Here, we examined how thermal mismatches interact with body size, life stage, habitat, latitude, elevation, phylogeny and International Union for Conservation of Nature (IUCN) conservation status to predict infection prevalence of the chytrid fungusBatrachochytrium dendrobatidis(Bd) in a global analysis of 32 291 amphibian hosts. As hypothesised, we found that the susceptibility of larger hosts and hosts from lower latitudes toBdwas influenced by thermal mismatches. Furthermore, hosts of conservation concern were more susceptible than others following thermal mismatches, suggesting that thermal mismatches might have contributed to recent amphibian declines.

 
more » « less
Award ID(s):
1754868
NSF-PAR ID:
10460682
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
22
Issue:
5
ISSN:
1461-023X
Page Range / eLocation ID:
p. 817-825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    To combat the threat of emerging infectious diseases in wildlife, ecoimmunologists seek to understand the complex interactions among pathogens, their hosts, and their shared environments. The cutaneous fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of innumerable amphibian species, including the Panamanian golden frog (Atelopus zeteki). Given that Bd can evade or dampen the acquired immune responses of some amphibians, nonspecific immune defenses are thought to be especially important for amphibian defenses against Bd. In particular, skin secretions constitute a vital component of amphibian innate immunity against skin infections, but their role in protecting A. zeteki from Bd is unknown. We investigated the importance of this innate immune component by reducing the skin secretions from A. zeteki and evaluating their effectiveness against Bd in vitro and in vivo. Following exposure to Bd in a controlled inoculation experiment, we compared key disease characteristics (e.g., changes in body condition, prevalence, pathogen loads, and survival) among groups of frogs that had their skin secretions reduced and control frogs that maintained their skin secretions. Surprisingly, we found that the skin secretions collected from A. zeteki increased Bd growth in vitro. This finding was further supported by infection and survival patterns in the in vivo experiment where frogs with reduced skin secretions tended to have lower pathogen loads and survive longer compared to frogs that maintained their secretions. These results suggest that the skin secretions of A. zeteki are not only ineffective at inhibiting Bd but may enhance Bd growth, possibly leading to greater severity of disease and higher mortality in this highly vulnerable species. These results differ from those of previous studies in other amphibian host species that suggest that skin secretions are a key defense in protecting amphibians from developing severe chytridiomycosis. Therefore, we suggest that the importance of immune components cannot be generalized across all amphibian species or over time. Moreover, the finding that skin secretions may be enhancing Bd growth emphasizes the importance of investigating these immune components in detail, especially for species that are a conservation priority.

     
    more » « less
  2. Abstract

    Batrachochytrium dendrobatidis(Bd) has been associated with massive amphibian population declines worldwide. Wildlife vaccination campaigns have proven effective for mitigating damage from other pathogens, and there is evidence that adult frogs can acquire resistance to Bd when exposed to killed Bd zoospores and the metabolites they produced.

    Here, we investigated whether Cuban treefrogs tadpolesOsteopilus septentrionaliscan gain protection from Bd through exposure to a prophylaxis treatment composed of killed zoospores or soluble Bd metabolites. We used a 2 × 2 factorial design, crossing the presence or absence of killed zoospores with the presence or absence of Bd metabolites. All hosts were subsequently exposed to live Bd to evaluate susceptibility.

    Exposure to killed zoospores did not induce a protective response. However, tadpoles exposed to Bd metabolites had significantly lower Bd intensity and prevalence than tadpoles that were not exposed to metabolites.

    The metabolites Bd produce pose no risk of Bd infection and therefore make an epidemiologically safe prophylaxis treatment, protecting tadpoles against Bd. This work provides a promising potential for protecting amphibians in the wild as a disease management strategy for controlling Bd‐associated declines.

     
    more » « less
  3. Abstract

    Environmental temperature is a crucial abiotic factor that influences the success of ectothermic organisms, including hosts and pathogens in disease systems. One example is the amphibian chytrid fungus,Batrachochytrium dendrobatidis(Bd), which has led to widespread amphibian population declines. Understanding its thermal ecology is essential to effectively predict outbreaks. Studies that examine the impact of temperature on hosts and pathogens often do so in controlled constant temperatures. Although varying temperature experiments are becoming increasingly common, it is unrealistic to test every temperature scenario. Thus, reliable methods that use constant temperature data to predict performance in varying temperatures are needed. In this study, we tested whether we could accurately predictBdgrowth in three varying temperature regimes, using a Bayesian hierarchical model fit with constant temperatureBdgrowth data. We fit the Bayesian hierarchical model five times, each time changing the thermal performance curve (TPC) used to constrain the logistic growth rate to determine how TPCs influence the predictions. We then validated the model predictions usingBdgrowth data collected from the three tested varying temperature regimes. Although all TPCs overpredictedBdgrowth in the varying temperature regimes, some functional forms performed better than others. Varying temperature impacts on disease systems are still not well understood and improving our understanding and methodologies to predict these effects could provide insights into disease systems and help conservation efforts.

     
    more » « less
  4. Abstract

    Life processes of ectothermic vertebrates are intimately linked to the temperature of their environment, influencing their metabolism, reproduction, behaviour and immune responses. In amphibians infected by the generalist chytrid pathogenBatrachochytrium dendrobatidis(Bd), host survival, infection prevalence and infection intensity are often temperature‐ and/or seasonally dependent. However, the transcriptional underpinnings of thermal differences in infection responses remain unknown. Measuring the impact of temperature on host responses to infection is a key component for understanding climatic influences on chytrid disease dynamics. TheBd‐responsive gene pathways in frogs are well documented, but our understanding of salamander immune expression profiles during infection with chytrids remains limited. Here we characterize the transcriptomic responses ofPlethodon cinereususing RNA sequencing by comparing skin and splenic gene expression of individuals uninfected, succumbing toBdinfection and naturally cleared ofBdinfection at three temperatures. We suggest that amphibian temperature‐dependent susceptibility toBdis probably driven by shifts in expression of the innate and adaptive immune axes. Our study shows increased expression of transcripts associated with inflammation at lower temperatures and a shift towards increased expression of adaptive immune genes, including MHC (major histocompatibility complex), at higher temperatures. In the face of climate change, and as concerns for the spread of emergent chytrid pathogens increase, our results provide important functional genomic resources to help understand how these pathogenic fungi may continue to affect amphibian communities globally in the future.

     
    more » « less
  5. Emerging infectious diseases have been especially devastating to amphibians, the most endangered class of vertebrates. For amphibians, the greatest disease threat is chytridiomycosis, caused by one of two chytridiomycete fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans ( Bsal ). Research over the last two decades has shown that susceptibility to this disease varies greatly with respect to a suite of host and pathogen factors such as phylogeny, geography (including abiotic factors), host community composition, and historical exposure to pathogens; yet, despite a growing body of research, a comprehensive understanding of global chytridiomycosis incidence remains elusive. In a large collaborative effort, Bd -Maps was launched in 2007 to increase multidisciplinary investigations and understanding using compiled global Bd occurrence data ( Bsal was not discovered until 2013). As its database functions aged and became unsustainable, we sought to address critical needs utilizing new technologies to meet the challenges of aggregating data to facilitate research on both Bd and Bsal . Here, we introduce an advanced central online repository to archive, aggregate, and share Bd and Bsal data collected from around the world. The Amphibian Disease Portal ( https://amphibiandisease.org ) addresses several critical community needs while also helping to build basic biological knowledge of chytridiomycosis. This portal could be useful for other amphibian diseases and could also be replicated for uses with other wildlife diseases. We show how the Amphibian Disease Portal provides: (1) a new repository for the legacy Bd- Maps data; (2) a repository for sample-level data to archive datasets and host published data with permanent DOIs; (3) a flexible framework to adapt to advances in field, laboratory, and informatics technologies; and (4) a global aggregation of Bd and Bsal infection data to enable and accelerate research and conservation. The new framework for this project is built using biodiversity informatics best practices and metadata standards to ensure scientific reproducibility and linkages across other biological and biodiversity repositories. 
    more » « less