skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reading Detection in Real-time
Observable reading behavior, the act of moving the eyes over lines of text, is highly stereotyped among the users of a language, and this has led to the development of reading detectors–methods that input windows of sequential fixations and output predictions of the fixation behavior during those windows being reading or skimming. The present study introduces a newmethod for reading detection using Region Ranking SVM (RRSVM). An SVM-based classifier learns the local oculomotor features that are important for real-time reading detection while it is optimizing for the global reading/skimming classification, making it unnecessary to hand-label local fixation windows for model training. This RRSVM reading detector was trained and evaluated using eye movement data collected in a laboratory context, where participants viewed modified web news articles and had to either read them carefully for comprehension or skim them quickly for the selection of keywords (separate groups). Ground truth labels were known at the global level (the instructed reading or skimming task), and obtained at the local level in a separate rating task. The RRSVM reading detector accurately predicted 82.5% of the global (article-level) reading/skimming behavior, with accuracy in predicting local window labels ranging from 72-95%, depending on how tuned the RRSVM was for local and global weights. With this RRSVM reading detector, a method now exists for near real-time reading detection without the need for hand-labeling of local fixation windows. With real-time reading detection capability comes the potential for applications ranging from education and training to intelligent interfaces that learn what a user is likely to know based on previous detection of their reading behavior.  more » « less
Award ID(s):
1718014
PAR ID:
10095670
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Symposium on Eye Tracking Research And Application
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This manuscript presents GazeBase, a large-scale longitudinal dataset containing 12,334 monocular eye-movement recordings captured from 322 college-aged participants. Participants completed a battery of seven tasks in two contiguous sessions during each round of recording, including a – (1) fixation task, (2) horizontal saccade task, (3) random oblique saccade task, (4) reading task, (5/6) free viewing of cinematic video task, and (7) gaze-driven gaming task. Nine rounds of recording were conducted over a 37 month period, with participants in each subsequent round recruited exclusively from prior rounds. All data was collected using an EyeLink 1000 eye tracker at a 1,000 Hz sampling rate, with a calibration and validation protocol performed before each task to ensure data quality. Due to its large number of participants and longitudinal nature, GazeBase is well suited for exploring research hypotheses in eye movement biometrics, along with other applications applying machine learning to eye movement signal analysis. Classification labels produced by the instrument’s real-time parser are provided for a subset of GazeBase, along with pupil area. 
    more » « less
  2. Task-relevant grasping is critical for industrial assembly, where downstream manipulation tasks constrain the set of valid grasps. Learning how to perform this task, however, is challenging, since task-relevant grasp labels are hard to define and annotate. There is also yet no consensus on proper representations for modeling or off-the-shelf tools for performing task-relevant grasps. This work proposes a framework to learn task-relevant grasping for industrial objects without the need of time-consuming real-world data collection or manual annotation. To achieve this, the entire framework is trained solely in simulation, including supervised training with synthetic label generation and self-supervised, hand-object interaction. In the context of this framework, this paper proposes a novel, object-centric canonical representation at the category level, which allows establishing dense correspondence across object instances and transferring task-relevant grasps to novel instances. Extensive experiments on task-relevant grasping of densely-cluttered industrial objects are conducted in both simulation and real-world setups, demonstrating the effectiveness of the proposed framework. 
    more » « less
  3. A machine learning-based detection framework is proposed to detect a class of cyber-attacks that redistribute loads by modifying measurements. The detection framework consists of a multi-output support vector regression (SVR) load predictor and a subsequent support vector machine (SVM) attack detector to determine the existence of load redistribution (LR) attacks utilizing loads predicted by the SVR predictor. Historical load data for training the SVR are obtained from the publicly available PJM zonal loads and are mapped to the IEEE 30-bus system. The features to predict loads are carefully extracted from the historical load data capturing both temporal and spatial correlations. The SVM attack detector is trained using normal data and randomly created LR attacks, so that it can maximally explore the attack space. An algorithm to create random LR attacks is introduced. The results show that the SVM detector trained merely using random attacks can effectively detect not only random attacks, but also intelligently designed attacks. Moreover, using the SVR predicted loads to re-dispatch generation when attacks are detected can significantly mitigate the attack consequences. 
    more » « less
  4. Obtaining annotations for large training sets is expen- sive, especially in settings where domain knowledge is re- quired, such as behavior analysis. Weak supervision has been studied to reduce annotation costs by using weak la- bels from task-specific labeling functions (LFs) to augment ground truth labels. However, domain experts still need to hand-craft different LFs for different tasks, limiting scal- ability. To reduce expert effort, we present AutoSWAP: a framework for automatically synthesizing data-efficient task-level LFs. The key to our approach is to efficiently represent expert knowledge in a reusable domain-specific language and more general domain-level LFs, with which we use state-of-the-art program synthesis techniques and a small labeled dataset to generate task-level LFs. Addition- ally, we propose a novel structural diversity cost that allows for efficient synthesis of diverse sets of LFs, further improv- ing AutoSWAP’s performance. We evaluate AutoSWAP in three behavior analysis domains and demonstrate that Au- toSWAP outperforms existing approaches using only a frac- tion of the data. Our results suggest that AutoSWAP is an effective way to automatically generate LFs that can signif- icantly reduce expert effort for behavior analysis. 
    more » « less
  5. We present Hand-CNN, a novel convolutional network architecture for detecting hand masks and predicting hand orientations in unconstrained images. Hand-CNN extends MaskRCNN with a novel attention mechanism to incorporate contextual cues in the detection process. This attention mechanism can be implemented as an efficient network module that captures non-local dependencies between features. This network module can be inserted at different stages of an object detection network, and the entire detector can be trained end-to-end. We also introduce a large-scale annotated hand dataset containing hands in unconstrained images for training and evaluation. We show that Hand-CNN outperforms existing methods on several datasets, including our hand detection benchmark and the publicly available PASCAL VOC human layout challenge. We also conduct ablation studies on hand detection to show the effectiveness of the proposed contextual attention module. 
    more » « less