skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LeanResNet: A Low-cost Yet Effective Convolutional Residual Networks
Convolutional Neural Networks (CNNs) filter the input data using spatial convolution operators with compact stencils. Commonly, the convolution operators couple features from all channels, which leads to immense computational cost in the training of and prediction with CNNs. To improve the efficiency of CNNs, we introduce lean convolution operators that reduce the number of parameters and computational complexity, and can be used in a wide range of existing CNNs. Here, we exemplify their use in residual networks (ResNets), which have been very reliable for a few years now and analyzed intensively. In our experiments on three image classification problems, the proposed LeanResNet yields results that are comparable to other recently proposed reduced architectures using similar number of parameters.  more » « less
Award ID(s):
1751636 1522599
PAR ID:
10095863
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Joint Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR) at ICML 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum computing (QC) has opened the door to advancements in machine learning (ML) tasks that are currently implemented in the classical domain. Convolutional neural networks (CNNs) are classical ML architectures that exploit data locality and possess a simpler structure than a fully connected multi-layer perceptrons (MLPs) without compromising the accuracy of classification. However, the concept of preserving data locality is usually overlooked in the existing quantum counterparts of CNNs, particularly for extracting multifeatures in multidimensional data. In this paper, we present an multidimensional quantum convolutional classifier (MQCC) that performs multidimensional and multifeature quantum convolution with average and Euclidean pooling, thus adapting the CNN structure to a variational quantum algorithm (VQA). The experimental work was conducted using multidimensional data to validate the correctness and demonstrate the scalability of the proposed method utilizing both noisy and noise-free quantum simulations. We evaluated the MQCC model with reference to reported work on state-of-the-art quantum simulators from IBM Quantum and Xanadu using a variety of standard ML datasets. The experimental results show the favorable characteristics of our proposed techniques compared with existing work with respect to a number of quantitative metrics, such as the number of training parameters, cross-entropy loss, classification accuracy, circuit depth, and quantum gate count. 
    more » « less
  2. In this paper, we pave a novel way towards the concept of bit-wise In-Memory Convolution Engine (IMCE) that could implement the dominant convolution computation of Deep Convolutional Neural Networks (CNN) within memory. IMCE employs parallel computational memory sub-array as a fundamental unit based on our proposed Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) design. Then, we propose an accelerator system architecture based on IMCE to efficiently process low bit-width CNNs. This architecture can be leveraged to greatly reduce energy consumption dealing with convolutional layers and also accelerate CNN inference. The device to architecture co-simulation results show that the proposed system architecture can process low bit-width AlexNet on ImageNet data-set favorably with 785.25μJ/img, which consumes ~3× less energy than that of recent RRAM based counterpart. Besides, the chip area is ~4× smaller. 
    more » « less
  3. Deep convolutional neural networks have revolutionized many machine learning and computer vision tasks, however, some remaining key challenges limit their wider use. These challenges include improving the network's robustness to perturbations of the input image and the limited ``field of view'' of convolution operators. We introduce the IMEXnet that addresses these challenges by adapting semi-implicit methods for partial differential equations. Compared to similar explicit networks, such as residual networks, our network is more stable, which has recently shown to reduce the sensitivity to small changes in the input features and improve generalization. The addition of an implicit step connects all pixels in each channel of the image and therefore addresses the field of view problem while still being comparable to standard convolutions in terms of the number of parameters and computational complexity. We also present a new dataset for semantic segmentation and demonstrate the effectiveness of our architecture using the NYU Depth dataset. 
    more » « less
  4. Residual neural networks can be viewed as the forward Euler discretization of an Ordinary Differential Equation (ODE) with a unit time step. This has recently motivated researchers to explore other discretization approaches and train ODE based networks. However, an important challenge of neural ODEs is their prohibitive memory cost during gradient backpropogation. Recently a method proposed in arXiv:1806.07366, claimed that this memory overhead can be reduced from LNt, where Nt is the number of time steps, down to O(L) by solving forward ODE backwards in time, where L is the depth of the network. However, we will show that this approach may lead to several problems: (i) it may be numerically unstable for ReLU/non-ReLU activations and general convolution operators, and (ii) the proposed optimize-then-discretize approach may lead to divergent training due to inconsistent gradients for small time step sizes. We discuss the underlying problems, and to address them we propose ANODE, a neural ODE framework which avoids the numerical instability related problems noted above. ANODE has a memory footprint of O(L) + O(Nt), with the same computational cost as reversing ODE solve. We furthermore, discuss a memory efficient algorithm which can further reduce this footprint with a tradeoff of additional computational cost. We show results on Cifar-10/100 datasets using ResNet and SqueezeNext neural networks. 
    more » « less
  5. Although state-of-the-art (SOTA) CNNs achieve outstanding performance on various tasks, their high computation demand and massive number of parameters make it difficult to deploy these SOTA CNNs onto resource-constrained devices. Previous works on CNN acceleration utilize low-rank approximation of the original convolution layers to reduce computation cost. However, these methods are very difficult to conduct upon sparse models, which limits execution speedup since redundancies within the CNN model are not fully exploited. We argue that kernel granularity decomposition can be conducted with low-rank assumption while exploiting the redundancy within the remaining compact coefficients. Based on this observation, we propose PENNI, a CNN model compression framework that is able to achieve model compactness and hardware efficiency simultaneously by (1) implementing kernel sharing in convolution layers via a small number of basis kernels and (2) alternately adjusting bases and coefficients with sparse constraints. Experiments show that we can prune 97% parameters and 92% FLOPs on ResNet18 CIFAR10 with no accuracy loss, and achieve 44% reduction in run-time memory consumption and a 53% reduction in inference latency. 
    more » « less