skip to main content


Title: The growing importance of data literacy in life science education
To prepare students for the data‐rich future that undoubtedly lies ahead, it is imperative that STEM educators rise to meet this challenge and promote the development of strong data literacy in our students. The central ideas, suggestions, and conclusions from the discussion at the 2017 Life Discovery - Doing Science Education conference in Norman, Oklahoma, are summarized here to stimulate individual reflection and promote further conversations on data literacy in biology education among colleagues, departments, and programs.  more » « less
Award ID(s):
1742980
NSF-PAR ID:
10095978
Author(s) / Creator(s):
;
Date Published:
Journal Name:
American journal of botany
Volume:
105
Issue:
12
ISSN:
1537-2197
Page Range / eLocation ID:
1953-1956
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The promotion of global sustainability within environmental science courses requires a paradigm switch from knowledge-based teaching to teaching that stimulates higher-order cognitive skills. Non-major undergraduate science courses, such as environmental science, promote critical thinking in students in order to improve the uptake of scientific information and develop the rational decision making used to make more informed decisions. Science, engineering, technology and mathematics (STEM) courses rely extensively on visuals in lectures, readings and homework to improve knowledge. However, undergraduate students do not automatically acquire visual literacy and a lack of intervention from instructors could be limiting academic success. In this study, a visual literacy intervention was developed and tested in the face-to-face (FTF) and online sections of an undergraduate non-major Introduction to Environmental Science course. The intervention was designed to test and improve visual literacy at three levels: (1) elementary—identifying values; (2) intermediate—identifying trends; and (3) advanced—using the data to make projections or conclusions. Students demonstrated a significant difference in their ability to answer elementary and advanced visual literacy questions in both course sections in the pre-test and post-test. Students in the face-to-face course had significantly higher exam scores and higher median assessment scores compared to sections without a visual literacy intervention. The online section did not show significant improvements in visual literacy or academic success due to a lack of reinforcement of visual literacy following the initial intervention. The visual literacy intervention shows promising results in improving student academic success and should be considered for implementation in other general education STEM courses. 
    more » « less
  2. Design thinking has an important role in STEM education. However, there has been limited research on how students engage in various modalities throughout the design process in hands-on design tasks. To promote middle school students’ engineering literacy, it is necessary to examine the use of design modalities during design. Using a case study approach, we examine middle school students’ design stages and modalities during design activities. We also identify the patterns of design processes in the teams with different design outcomes. Drawing on theories in design thinking and embodied interaction, we proposed a framework and devised a video analysis protocol to examine students’ design stages and modalities. Middle school students attending a design workshop engaged in two design activities in teams of 3–4 people. The design sessions were video recorded and analyzed using the video analysis protocol. The teams engaged in the stages of planning, building, and testing, while employing the verbal, the visual, and the physical modalities. The teams that varied in design outcomes exhibited different patterns in the use of multiple modalities during the design stages. This study contributes to research on design thinking by proposing a framework for analyzing middle school students’ multimodal design processes and presenting data visualization methods to identify patterns in design stages and modalities. The findings suggest the necessity to examine students’ use of design modalities in the context of design stages and imply the potential benefits of using multiple modalities during design. The implications for future research and education practices are also discussed. 
    more » « less
  3. Artificial intelligence (AI) has rapidly pervaded and reshaped almost all walks of life, but efforts to promote AI literacy in K-12 schools remain limited. There is a knowledge gap in how to prepare teachers to teach AI literacy in inclusive classrooms and how teacher-led classroom implementations can impact students. This paper reports a comparison study to investigate the effectiveness of an AI literacy curriculum when taught by classroom teachers. The experimental group included 89 middle school students who learned an AI literacy curriculum during regular school hours. The comparison group consisted of 69 students who did not learn the curriculum. Both groups completed the same pre and post-test. The results show that students in the experimental group developed a deeper understanding of AI concepts and more positive attitudes toward AI and its impact on future careers after the curriculum than those in the comparison group. This shows that the teacher-led classroom implementation successfully equipped students with a conceptual understanding of AI. Students achieved significant gains in recognizing how AI is relevant to their lives and felt empowered to thrive in the age of AI. Overall this study confirms the potential of preparing K-12 classroom teachers to offer AI education in classrooms in order to reach learners of diverse backgrounds and broaden participation in AI literacy education among young learners. 
    more » « less
  4. New technologies are continually being placed in the ocean, constantly collecting ocean data in real-time. As a result, Data Literacy is now a necessary learning goal for supporting students' Ocean Literacy. The newest ships in the U.S. Academic Research Fleet, the Regional Class Research Vessels (RCRVs), are being built with the aim of supporting data literacy through outreach and education, with aid from a forthcoming real-time data portal. To understand how the RCRV’s outreach and education initiatives can best support data and ocean literacy, while also facilitating intentional engagement with minoritized populations, a three-phase research strategy was conducted over three years. The objective was to determine promising practices in data literacy education and shipboard outreach that are also culturally responsive. The first phase of the research interviewed experts in the fields of teaching, data literacy, shipboard education, and community engagement in order to generate recommendations. The second phase was an assessment of a three-day data literacy high-school curriculum utilizing research vessel data. The third phase examined the success of potential culturally responsive data literacy curricular frameworks and teaching practices in an afterschool pilot program for Latinx youth. The research determined that in a world where students have never ending access to data, data literacy education must be scaffolded throughout a student's life. Data used in education must be contextual and relatable and the best tools for data literacy learning are designed for teachers and students. As new knowledge is being generated about the ocean through new technologies continually collecting data, ocean literacy can no longer exist without data literacy. 
    more » « less
  5. Despite efforts to diversify the science, technology, engineering, and mathematics (STEM) workforce, engineering remains a White, male-dominated profession. Often, women and underrepresented students do not identify with STEM careers and many opt out of STEM pathways prior to entering high school or college. In order to broaden participation in engineering, new methods of engaging and retaining those who are traditionally underrepresented in engineering are needed. This work is based on a promising approach for encouraging and supporting diverse participation in engineering: disciplinary literacy instruction (DLI). Generally, teachers use DLI to provide K-12 students with a framework for interpreting, evaluating, and generating discipline-specific texts. This instruction provides students with an understanding of how experts in the discipline read, engage, and generate texts used to solve problems or communicate information. While models of disciplinary literacy have been developed and disseminated in several humanities and science fields, there is a lack of empirical and theoretical research that examines the use of DLI within the engineering domain. It is thought that DLI can be used to foster diverse student interest in engineering from a young age by removing literacy-based barriers that often discourage underrepresented students from entering and pursuing careers in STEM fields. This work-in-progress paper describes a new study underway to develop and disseminate a model of disciplinary literacy in engineering. During this project, researchers will observe, interview, and collect written artifacts from engineers working across four sub-disciplines of engineering: aerospace/mechanical, biological, civil/environmental, and electrical/computer. Data that will be collected include interview transcripts, observation field notes, engineer logs of literacy practices, and photographs of texts that the engineers read and write. Data will be analyzed using constant comparative analytic (CCA) methods. CCA will be used to generate theoretical codes from the data that will form the basis for a model of disciplinary literacy in engineering. As a primary outcome of this research, the engineering DLI model will promote the use of DLI practices within K-12 engineering instruction in order to assist and encourage diverse, underrepresented students to engage in engineering courses of study and pursue STEM careers. Thus far, the research team has begun collecting and analyzing data from two electrical engineers. This work in progress paper will report on preliminary findings, as well as implications for K-12 classroom instruction. For instance, this study has shed insights on how engineers use texts as part of the process of conducting failure analysis, and the research team has begun to conceptualize how these types of texts might be used with K-12 students to help them conduct failure analyses during design testing. Ultimately, this project will result in a list of grade-appropriate texts, evaluative frameworks, and activities (e.g., failure analysis in testing) that K-12 engineering teachers can use to prepare their diverse students to think, act, read, and write like engineers. 
    more » « less