skip to main content


Title: Traumatic Resin Ducts in Alaska Mountain Hemlock Trees Provide a New Proxy for Winter Storminess
Abstract

Winter is a critical season for land‐surface feedbacks and ecosystem processes; however, most high‐latitude paleo‐environmental reconstructions are blind to cold season conditions. Here we introduce a winter‐sensitive, paleo‐proxy record that is based on the relative frequency of tangential rows of traumatic resin ducts (TRDs) in the annual growth rings of mountain hemlocks (Tsuga mertensiana) growing near treeline in Southeast Alaska. Hemlocks produce a row of TRDs in the earlywood portion of their annual rings in response to cambial damage incurred during winter. Multidecadal bouts of TRD production were followed by growth‐leader replacement, reaction wood formation, and divergence in radial growth between storm‐damaged trees and less exposed mountain hemlock forests. These patterns are consistent with TRDs being a response to tree damage caused by ice and snowstorms, a conclusion supported by the krummholz tree architecture at these sites. This relationship is further corroborated by significant correlations between our TRD record and the strength of the wintertime Aleutian Low (AL) pressure system that is linked to tree‐damaging agents like wind, precipitation, and ice storm strength in Southeast Alaska. The combined TRD/krummholz architecture record indicates that abrupt shifts between strong and weak AL phases occurred every several decades since CE 1700 and that the 1800s had relatively long AL phases with heavy snowpacks. In addition to describing the magnitude and tempo of wintertime climate change in Northwestern North America, these results suggest that North Pacific Decadal Variability underlies the long‐term dynamics of treeline ecosystems along the northeast Pacific coast.

 
more » « less
Award ID(s):
1703029 1743738 1603473 1504134
NSF-PAR ID:
10448294
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
124
Issue:
7
ISSN:
2169-8953
Page Range / eLocation ID:
p. 1923-1938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool‐season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool‐season standardized precipitation‐evapotranspiration index, April snow water equivalent, and water year streamflow from a network ofUSGSstream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree‐ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool‐season storm tracks entered western North America between approximately 41°N and 53°N. Cool‐season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south‐shifted storm tracks, while Canadian ecosystems were greener in years when the cool‐season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north‐shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool‐season storm tracks.

     
    more » « less
  2. The hydroclimate of the southwestern United States (US) region changed abruptly during the latest Pleistocene as the continental ice sheets over North America retreated from their most southerly extent. To investigate the nature of this change, we present a new record from Lake Elsinore, located 36 km inland from the Pacific Ocean in Southern California and evaluate it in the context of records across the coastal and interior southwest United States, including northwest Mexico. The sediment core recovered from Lake Elsinore provides a continuous sequence with multi-decadal resolution spanning 19e9 ka BP. Sedimentological and geochemical analyses reveal hydrologic variability. In particular, sand and carbonate components indicate abrupt changes at the Oldest Dryas (OD), BøllingeAllerød (BA), and Younger Dryas (YD) transitions, consistent with the timing in Greenland. Hydrogen isotope analyses of the C28 nalkanoic acids from plant leaf waxes (dDwax) reveal a long term trend toward less negative values across 19 9 ka BP. dDwax values during the OD suggest a North Pacific moisture source for precipitation, consistent with the dipping westerlies hypothesis. We find no isotopic evidence for the North American Monsoon reaching as far west as Lake Elsinore; therefore, we infer that wet/dry changes in the coastal southwest were expressed through winter-season precipitation, consistent with modern climatology. Comparing Lake Elsinore to other southwest records (notably Cave of Bells and Fort Stanton) we find coincident timing of the major transitions (OD to BA, BA to YD) and hydrologic responses during the OD and BA. The hydrologic response, however, varied during the YD consistent with a dipole between the coastal and interior southwest. The coherent pattern of hydrologic responses across the interior southwest US and northwest Mexico during the OD (wet), the BA (drier), and YD (wet) follows changes in the Atlantic Meridional Overturning Circulation, presumably via its combined influence on North Pacific winter storm tracks and the extent/magnitude of the North American Monsoon. In contrast, Lake Elsinore and the coastal southwest experiences a deglacial drying trend punctuated by abrupt change at the OD to BA and BA to YD transitions. This trend tracks rising greenhouse gases through the deglacial, with an apparent southward shift in westerly moisture sources adjusting to the retreating ice sheet. 
    more » « less
  3. The Indian summer monsoon (ISM), which today supplies ~75% of annual precipitation to South Asia, has been reconstructed across previous centuries using a variety of hydroclimate-sensitive proxies. In some of these cases, ISM variability far exceeds that observed in the century-and-a-half-long instrumental record. Understanding the origins of these events is best addressed by developing a wide-ranging, multi-proxy network of high-resolution ISM reconstructions. In Nepal, ISM variability has been examined through tree rings, glacial ice, and lake sediments, but no stalagmite isotopic records of ISM rainfall have yet been published. Here we present a sub-decadally-resolved, precisely-dated, composite aragonite stalagmite record of ISM variability from Siddha Baba cave, central Nepal, for the last 2.7 kyr. A rainwater sampling program near the cave site, and a published study from Kathmandu (Adhikari et al., 2020), 150 km to the southeast, reveal that rainfall amount explains little of the observed variance in d18O values. Local hydroclimate is thus reconstructed from stalagmite 13C values, which we interpret as reflecting prior aragonite precipitation driven by changes in effective precipitation above the cave. ISM variability is apparent across a number of time scales, including centennial periods of reduced or enhanced rainfall coincident with societally-relevant precipitation regimes identified at other sites across South Asia. These include the Neo-Assyrian drought in the eastern Mediterranean and Middle East (2.7-2.5 kyr BP; Kathayat et al., 2019), the Mauria Empire (2.1-1.9 kyr BP), and the Guge Kingdom (0.9-0.3 kyr BP) pluvials in India and Tibet (Kathayat et al., 2017). A secular shift toward drier conditions since 0.5 kyr BP in the Siddha Baba record tracks the 18O records from Dasuopu glacier, Nepal Himalaya, and Sahiya cave, North India. Numerous multidecadal oscillations are also evident, including markedly wetter conditions during the 18th century, in the late Little Ice Age, apparent in the Dasuopu and Sahiya records. References Adhikari et al. (2020) Tellus B: Chem. Phys. Meteor., 72, 1-17. Kathayat et al. (2017) Sc. Adv., 7, e1701296. Kathayat et al. (2019) Sci. Adv., 5, eaax6656. 
    more » « less
  4. Abstract

    Stable oxygen isotopes (δ18O) in the Bona‐Churchill (B‐C) ice core from southeast Alaska provide a valuable, high‐resolution history of climate variability and sea ice cover in the western Arctic over the last 800 years. Multiple ice cores have been collected from the Wrangell‐St. Elias Mountain Range; however, their δ18O records exhibit little consistency as each core offers a unique view on local, regional, and/or global climate variability. To explore the primary mechanisms influencing the isotopic signature at the B‐C site, we utilize isotope‐enabled model data, reanalysis data, and observations, which all indicate a strong connection between isotopes at the B‐C site and western Arctic climate, likely established by the location of the storm track in this region. Enriched B‐C δ18O reflects increased southerly flow and warmer waters in the Bering Sea, which modulates the heat flux through the Bering Strait and into the Arctic, thereby affecting sea ice cover in the western Arctic. The B‐C δ18O paleorecord shares some remarkable similarities (r = −0.80,p < .001) with the duration of western arctic sea ice cover reconstructed from a Chukchi Sea sediment core. Interestingly, during the Little Ice Age, enriched δ18O and reduced western Arctic sea ice are observed and may be indicative of prolonged periods of the warm Arctic/cold continents pattern and a northwestward shift of the North Pacific storm track.

     
    more » « less
  5. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understanding of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

     
    more » « less