skip to main content


Title: The stormy life of galaxy clusters
Galaxy clusters form from the infall of dark and baryonic matter at the intersection of cosmic filaments. Most of the baryons are in the form of a hot, magnetized, intracluster plasma detected through its X-ray thermal bremsstrahlung emission. This plasma is tightly coupled to a second, cosmic ray plasma, detected through its synchrotron radio emission. Together, the properties of these plasmas encode the history of the cluster's formation and provide a snapshot of the ongoing cluster evolution. This article provides an overview for the more general astrophysical and space plasma community of the dynamical processes revealed by the diffuse plasma emissions.  more » « less
Award ID(s):
1714205
NSF-PAR ID:
10096211
Author(s) / Creator(s):
Date Published:
Journal Name:
Physics Today
Volume:
72
Issue:
1
ISSN:
0031-9228
Page Range / eLocation ID:
46 to 52
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The presence of relativistic electrons within the diffuse gas phase of galaxy clusters is now well established, thanks to deep radio observations obtained over the last decade, but their detailed origin remains unclear. Cosmic ray protons are also expected to accumulate during the formation of clusters. They may explain part of the radio signal and would lead to γ -ray emission through hadronic interactions within the thermal gas. Recently, the detection of γ -ray emission has been reported toward the Coma cluster with Fermi -LAT. Assuming that this γ -ray emission arises essentially from pion decay produced in proton-proton collisions within the intracluster medium (ICM), we aim at exploring the implication of this signal on the cosmic ray content of the Coma cluster and comparing it to observations at other wavelengths. We use the MINOT software to build a physical model of the Coma cluster, which includes the thermal target gas, the magnetic field strength, and the cosmic rays, to compute the corresponding expected γ -ray signal. We apply this model to the Fermi -LAT data using a binned likelihood approach, together with constraints from X-ray and Sunyaev-Zel’dovich observations. We also consider contamination from compact sources and the impact of various systematic effects on the results. We confirm that a significant γ -ray signal is observed within the characteristic radius θ 500 of the Coma cluster, with a test statistic TS ≃ 27 for our baseline model. The presence of a possible point source (4FGL J1256.9+2736) may account for most of the observed signal. However, this source could also correspond to the peak of the diffuse emission of the cluster itself as it is strongly degenerate with the expected ICM emission, and extended models match the data better. Given the Fermi -LAT angular resolution and the faintness of the signal, it is not possible to strongly constrain the shape of the cosmic ray proton spatial distribution when assuming an ICM origin of the signal, but preference is found in a relatively flat distribution elongated toward the southwest, which, based on data at other wavelengths, matches the spatial distribution of the other cluster components well. Assuming that the whole γ -ray signal is associated with hadronic interactions in the ICM, we constrain the cosmic ray to thermal energy ratio within R 500 to X CRp = 1.79 −0.30 +1.11 % and the slope of the energy spectrum of cosmic rays to α = 2.80 −0.13 +0.67 ( X CRp = 1.06 −0.22 +0.96 % and α = 2.58 −0.09 +1.12 when including both the cluster and 4FGL J1256.9+2736 in our model). Finally, we compute the synchrotron emission associated with the secondary electrons produced in hadronic interactions assuming steady state. This emission is about four times lower than the overall observed radio signal (six times lower when including 4FGL J1256.9+2736), so that primary cosmic ray electrons or reacceleration of secondary electrons is necessary to explain the total emission. We constrain the amplitude of the primary to secondary electrons, or the required boost from reacceleration with respect to the steady state hadronic case, depending on the scenario, as a function of radius. Our results confirm that γ -ray emission is detected in the direction of the Coma cluster. Assuming that the emission is due to hadronic interactions in the intracluster gas, they provide the first quantitative measurement of the cosmic ray proton content in a galaxy cluster and its implication for the cosmic ray electron populations. 
    more » « less
  2. Abstract

    The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very high-energy (VHE, ≳0.1 TeV) emission from M87 has been detected by imaging air Cherenkov telescopes. Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov Observatory, a gamma-ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission originates in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we construct a spectral energy distribution from radio to gamma rays that is representative of the nonflaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain nonflaring VHE emission of M87 as well as an orphan flare reported in 2005.

     
    more » « less
  3. ABSTRACT

    Ultra-high energy cosmic rays are the most extreme energetic particles detected on Earth, however, their acceleration sites are still mysterious. We explore the contribution of low-luminosity gamma-ray bursts to the ultra-high energy cosmic ray flux, since they form the bulk of the nearby population. We analyse a representative sample of these bursts detected by BeppoSAX, INTEGRAL, and Swift between 1998–2016, and found that in order to reconcile our theoretical flux with the observed flux, these bursts should accelerate at most 10−13 M⊙ of ultra-high energy cosmic rays.

     
    more » « less
  4. Abstract

    The detection of high-energy neutrino signals from the nearby Seyfert galaxy NGC 1068 provides us with an opportunity to study nonthermal processes near the center of supermassive black holes. Using the IceCube and latest Fermi-LAT data, we present general multimessenger constraints on the energetics of cosmic rays and the size of neutrino emission regions. In the photohadronic scenario, the required cosmic-ray luminosity should be larger than ∼1%−10% of the Eddington luminosity and the emission radius should be ≲15RSin low-βplasma and ≲3RSin high-βplasma. The leptonic scenario overshoots the NuSTAR or Fermi-LAT data for any emission radii we consider, and the required gamma-ray luminosity is much larger than the Eddington luminosity. The beta-decay scenario also violates not only the energetics requirement but also gamma-ray constraints, especially when the Bethe–Heitler and photomeson production processes are consistently considered. Our results rule out the leptonic and beta-decay scenarios in a nearly model-independent manner and support hadronic mechanisms in magnetically powered coronae if NGC 1068 is a source of high-energy neutrinos.

     
    more » « less
  5. Abstract

    Ultra-high-energy cosmic rays (UHECRs), accelerated hadrons that can exceed energies of 1020eV, are the highest-energy particles ever observed. While the sources producing UHECRs are still unknown, the Pierre Auger Observatory has detected a large-scale dipole anisotropy in the arrival directions of cosmic rays above 8 EeV. In this work, we explore whether resolved gamma-ray sources can reproduce the Auger dipole. We use various Fermi Large Area Telescope catalogs as sources of cosmic rays in CRPropa simulations. We find that in all cases, the simulated dipole has an amplitude significantly larger than that measured by Auger, even when considering large extragalactic magnetic field strengths and optimistic source weighting schemes. Our result implies that the resolved gamma-ray sources are insufficient to account for the population of sources producing the highest-energy cosmic rays, and there must exist a population of UHECR sources that lack gamma-ray emission or are unresolved by the current-generation gamma-ray telescopes.

     
    more » « less