ABSTRACT Compared with our extensive understanding of the cell cycle, we have limited knowledge of how the cell quiescence–proliferation decision is regulated. Using a zebrafish epithelial model, we report a novel signaling mechanism governing the cell quiescence–proliferation decision. Zebrafish Ca2+-transporting epithelial cells, or ionocytes, maintain high cytoplasmic Ca2+ concentration ([Ca2+]c) due to the expression of Trpv6. Genetic deletion or pharmacological inhibition of Trpv6, or reduction of external Ca2+ concentration, lowered the [Ca2+]c and reactivated these cells. The ionocyte reactivation was attenuated by chelating intracellular Ca2+ and inhibiting calmodulin (CaM), suggesting involvement of a Ca2+ and CaM-dependent mechanism. Long-term imaging studies showed that after an initial decrease, [Ca2+]c gradually returned to the basal levels. There was a concomitant decease in endoplasmic reticulum (ER) Ca2+ levels. Lowering the ER Ca2+ store content or inhibiting ryanodine receptors impaired ionocyte reactivation. Further analyses suggest that CaM-dependent protein kinase kinase (CaMKK) is a key molecular link between Ca2+ and Akt signaling. Genetic deletion or inhibition of CaMKK abolished cell reactivation, which could be rescued by expression of a constitutively active Akt. These results suggest that the quiescence–proliferation decision in zebrafish ionocytes is regulated by Trpv6-mediated Ca2+ and CaMKK–Akt signaling.
more »
« less
Nanomolar tetrabromopyrrole alters Ca2+ dynamics in cortical neuronal networks by selective modification of ryanodine receptors and micromolar is neurotoxic due to SERCA pump inhibition.
Naturally synthesized marine organohalogens (MOH) and their anthropo- genic homologs produced as disinfection byproducts (DBP) are an emerging environmental health concern because several have been identified to exhibit potent biological activities in model systems, including cytotoxicity, genotox- icity, carcinogenicity and developmental toxicity. The molecular mechanisms mediating toxicity are poorly understood. Recently we discovered that several specific MOH and DBP measured in environmental and biological samples, including halopyrroles, halobipyrroles, haloindoles, and hydroxylated poly- brominated diphenylethers directly modify ryanodine receptors and SERCA pump activity, two key proteins anchored within sarcoplasmic/endoplasmic reticulum (SR/ER) that work in physiological opposition to tightly regulate net ER/SR Ca2+ dynamics and thereby shape meaningful Ca2+-dependent cel- lular processes. Using intact HEK293 cells null for ryanodine receptors (RyRs) expression and those that stably express RyR1, we demonstrate that tetra- bromopyrrole (TBP) selectively sensitizes RyR1 channels to caffeine-triggered Ca2+ release only in RyR1-expressing cells. TBP at higher concentrations also depletes of SR/ER Ca2+ stores in both null and RyR1 expressing cells com- mensurate with its lower potency to inhibitory SERCA in biochemical assays. Exposure of primary neuronal/glial co-cultures derived from newborn mice shows that TBP inhibits the frequency and amplitude of spontaneous Ca2+ oscillations (IC50=246 and 426nM, respectively), whereas >1μM produces a sustained rise in cytoplasmic Ca2+. Subchronic (24HR) exposure to TBP caused loss of neuronal/glial viability using the MTT assay (EC50=12.4μM). These re- sults show that nM TBP selectively targets RyR-mediated Ca2+ dynamics in a manner that has been shown to affect neurodevelopment, whereas low-μM exposures causes overt neurotoxicity, likely mediated by the combination of RyR activation and SERCA inhibition.
more »
« less
- Award ID(s):
- 1840842
- PAR ID:
- 10096551
- Date Published:
- Journal Name:
- The Toxicologist
- Volume:
- 168
- ISSN:
- 0731-9193
- Page Range / eLocation ID:
- 80
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Homeothermic endotherms defend their body temperature in cold environments using a number of behavioral and physiological mechanisms. Maintaining a stable body temperature primarily requires heat production through shivering or non-shivering thermogenesis (NST). Although the use of NST is well established in mammalian systems, the mechanisms and extent to which NST is used in birds are poorly understood. In mammals, one well-characterized mechanism of NST is through uncoupling of Ca2+ transport from ATP hydrolysis by sarco/endoplasmic reticulum ATPase (SERCA) in the skeletal muscle, which generates heat and may contribute to Ca2+ signaling for fatigue resistance and mitochondrial biogenesis. Two small proteins—sarcolipin (SLN) and phospholamban (PLN)—are known to regulate SERCA in mammals, but recent work shows inconsistent responses of SLN to cold acclimation in birds. In this study, we measured SERCA uncoupling in the pectoralis flight muscle of control (18°C) and cold-acclimated (−8°C) dark-eyed juncos (Junco hyemalis) that exhibited suppressed SLN transcription in the cold. We measured SERCA activity and Ca2+ uptake rates for the first time in cold-acclimated birds and found greater SERCA uncoupling in the muscle of juncos in the cold. However, SERCA uncoupling was not related to SLN or PLN transcription or measures of mitochondrial biogenesis. Nonetheless, SERCA uncoupling reduced an individual’s risk of hypothermia in the cold. Therefore, while SERCA uncoupling in the cold could be indicative of NST, it does not appear to be mediated by known regulatory proteins in these birds. These results prompt interesting questions about the significance of SLN and PLN in birds and the role of SERCA uncoupling in response to environmental conditions.more » « less
-
Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca2+) influx, leading to modulation of activity observed through Ca2+ event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca2+ response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca2+ influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca2+-activated potassium (KCa) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.more » « less
-
Frog virus 3 (FV3) is the type species of the genus Ranavirus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes. To date, the cellular receptors that are involved in the FV3 entry process are unknown. Class A scavenger receptors (SR-As) are a family of evolutionarily conserved cell-surface receptors that bind a wide range of chemically distinct polyanionic ligands and can function as cellular receptors for other DNA viruses, including vaccinia virus and herpes simplex virus. The present study aimed to determine whether SR-As are involved in FV3 cellular entry. By using well-defined SR-A competitive and non-competitive ligand-blocking assays and absolute qPCR, we demonstrated that the SR-A competitive ligands drastically reduced the quantities of cell-associated viral loads in frog cells. Moreover, inducing the expression of a human SR-AI in an SR-A null cell line significantly increased FV3–cell association. Together, our results indicate that SR-As are utilized by FV3 during the cellular entry process.more » « less
-
Leptin is a hormone produced by the small intestines and adipose tissue that promotes feelings of satiety. Leptin receptors (LepRs) are highly expressed in the hypothalamus, enabling central neural control of hunger. Interestingly, LepRs are also expressed in several other regions of the body and brain, notably in the cerebral cortex and hippocampus. These brain regions mediate higher-order sensory, motor, cognitive, and memory functions, which can be profoundly altered during periods of hunger and satiety. However, LepR expression in these regions has not been fully characterized on a cell-type-specific basis, which is necessary to begin assessing their potential functional impact. Consequently, we examined LepR expression on neurons and glia in the forebrain using a LepR-Cre transgenic mouse model. LepR-positive cells were identified using a ‘floxed’ viral cell-filling approach and co-labeling immunohistochemically for cell-type-specific markers, i.e., NeuN, VGlut2, GAD67, parvalbumin, somatostatin, 5-HT3R, WFA, S100β, and GFAP. In the cortex, LepR-positive cells were localized to lower layers (primarily layer 6) and exhibited non-pyramidal cellular morphologies. The majority of cortical LepR-positive cells were neurons, while the remainder were identified primarily as astrocytes or other glial cells. The majority of cortical LepR-positive neurons co-expressed parvalbumin, while none expressed somatostatin or 5-HT3R. In contrast, all hippocampal LepR-positive cells were neuronal, with none co-expressing GFAP. These data suggest that leptin can potentially influence neural processing in forebrain regions associated with sensation and limbic-related functions.more » « less
An official website of the United States government

