Polymer-based biomedical electronics provide a tunable platform to interact with nervous tissue both in vitro and in vivo. Ultimately, the ability to control functional properties of neural interfaces may provide important advantages to study the nervous system or to restore function in patients with neurodegenerative disorders. Liquid crystal elastomers (LCEs) are a class of smart materials that reversibly change shape when exposed to a variety of stimuli. Our interest in LCEs is based on leveraging this shape change to deploy electrode sites beyond the tissue regions exhibiting inflammation associated with chronic implantation. As a first step, we demonstrate that LCEs are cellular compatible materials that can be used as substrates for fabricating microelectrode arrays (MEAs) capable of recording single unit activity in vitro. Extracts from LCEs are non-cytotoxic (>70% normalized percent viability), as determined in accordance to ISO protocol 10993-5 using fibroblasts and primary murine cortical neurons. LCEs are also not functionally neurotoxic as determined by exposing cortical neurons cultured on conventional microelectrode arrays to LCE extract for 48 h. Microelectrode arrays fabricated on LCEs are stable, as determined by electrochemical impedance spectroscopy. Examination of the impedance and phase at 1 kHz, a frequency associated with single unit recording, showed results well within range of electrophysiological recordings over 30 days of monitoring in phosphate-buffered saline (PBS). Moreover, the LCE arrays are shown to support viable cortical neuronal cultures over 27 days in vitro and to enable recording of prominent extracellular biopotentials comparable to those achieved with conventional commercially-available microelectrode arrays.
more »
« less
Fully-Passive Wireless Implant for Neuropotential Acquisition: An In Vivo Validation
Implantable systems are often employed to perform continuous high-resolution recordings of neural activity. These systems frequently require invasive procedures when implanting and maintaining effective operation. This causes major interruptions to daily life. Previous work demonstrated an in vitro minimum detectable signal (MDS) of 15 μV in amplitude and RF sensitivity down to - 135 dBm. This suggests the possibility of detecting diminutive biopotentials in a wireless fully-passive manner. Here, for the first time, we validate this system through a series of in vivo electrophysiological recordings including both spontaneous cardiac activity and sensory evoked neural activity, with amplitudes ranging from a few microvolts to millivolts and across a spectrum of frequencies. We also present design considerations and the development of probes for neurosensing to accomplish detectability of biopotentials in the tens of microvolts in rats. The developed probes show improved impedance matching with the neurosensing system. Specifically, the new probes showed an impedance several orders of magnitude lower than those commercially available, thereby significantly improving signal detection. Notably, the presented in vivo validation of this technology has great future clinical implications in neuroscience as it offers a wireless and unobtrusive device for neurological research, monitoring, and therapeutic purposes.
more »
« less
- Award ID(s):
- 1763350
- PAR ID:
- 10096588
- Date Published:
- Journal Name:
- IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology
- ISSN:
- 2469-7249
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Conventional in vivo neural signal processing involves extracting spiking activity within the recorded signals from an ensemble of neurons and transmitting only spike counts over an adequate interval. However, for brain-computer interface (BCI) applications utilizing continuous local field potentials (LFPs) for cognitive decoding, the volume of neural data to be transmitted to a computer imposes relatively high data rate requirements. This is particularly true for BCIs employing high-density intracortical recordings with hundreds or thousands of electrodes. This article introduces the first autoencoder-based compression digital circuit for the efficient transmission of LFP neural signals. Various algorithmic and architectural-level optimizations are implemented to significantly reduce the computational complexity and memory requirements of the designed in vivo compression circuit. This circuit employs an autoencoder-based neural network, providing a robust signal reconstruction. The application-specific integrated circuit (ASIC) of the in vivo compression logic occupies the smallest silicon area and consumes the lowest power among the reported state-of-the-art compression ASICs. Additionally, it offers a higher compression rate and a superior signal-to-noise and distortion ratio.more » « less
-
The advent of high-yield electrophysiology using Neuropixels probes is now enabling researchers to simultaneously record hundreds of neurons with remarkably high signal to noise. However, these probes have not been well-suited to use in freely moving mice. It is critical to study neural activity in unrestricted animals for many reasons, such as leveraging ethological approaches to study neural circuits. We designed and implemented a novel device that allows Neuropixels probes to be customized for chronically implanted experiments in freely moving mice. We demonstrate the ease and utility of this approach in recording hundreds of neurons during an ethological behavior across weeks of experiments. We provide the technical drawings and procedures for other researchers to do the same. Importantly, our approach enables researchers to explant and reuse these valuable probes, a transformative step which has not been established for recordings with any type of chronically-implanted probe.more » « less
-
Abstract Transparent microelectrode arrays have proven useful in neural sensing, offering a clear interface for monitoring brain activity without compromising high spatial and temporal resolution. The current landscape of transparent electrode technology faces challenges in developing durable, highly transparent electrodes while maintaining low interface impedance and prioritizing scalable processing and fabrication methods. To address these limitations, we introduce artifact‐resistant transparent MXene microelectrode arrays optimized for high spatiotemporal resolution recording of neural activity. With 60% transmittance at 550 nm, these arrays enable simultaneous imaging and electrophysiology for multimodal neural mapping. Electrochemical characterization shows low impedance of 563 ± 99 kΩ at 1 kHz and a charge storage capacity of 58 mC cm⁻² without chemical doping. In vivo experiments in rodent models demonstrate the transparent arrays' functionality and performance. In a rodent model of chemically‐induced epileptiform activity, we tracked ictal wavefronts via calcium imaging while simultaneously recording seizure onset. In the rat barrel cortex, we recorded multi‐unit activity across cortical depths, showing the feasibility of recording high‐frequency electrophysiological activity. The transparency and optical absorption properties of Ti₃C₂Tx MXene microelectrodes enable high‐quality recordings and simultaneous light‐based stimulation and imaging without contamination from light‐induced artifacts.more » « less
-
This paper demonstrates a commercial off-the-shelf components (COTS)-based miniaturized wireless optogenetic headstage with simultaneous optical stimulation and electro-physiological recording capability for freely moving rodents. The proposed headstage contains 32 recording channels. The optical stimulation system is a battery-powered neural stimulator, comprised of a low dropout regulator (LDO), an oscillator, and a µLED. The electrophysiological signal recording system includes an intracortical neural probe made of a GaN-on-silicon substrate, an array of neural amplifiers with an integrated analog-to-digital converter (ADC), a transceiver integrated circuit, and a ceramic antenna. The integrated MUX with the ADC allows sampling of the amplified voltage at a sampling rate of 4000 kSamples/s. By placing the headstage on the head of a rodent and recording the neural signals from the Ventral Tegmental area of the brain, the system is experimentally validated in in-vivo. Experimental result shows that the proposed headstage can trigger neuron activity while collecting and detecting single-cell microvolt amplitude activity from multiple channels.more » « less
An official website of the United States government

