skip to main content


Title: From Nano to Micro: Evolution of Magnetic Domain Structures in Multidomain Magnetite
Abstract

Reliability of magnetic recordings of the ancient magnetic field is strongly dependent on the magnetic mineralogy of natural samples. Theoretical estimates of long‐term stability of remanence were restricted to single‐domain (SD) states, but micromagnetic models have recently demonstrated that the so‐called single‐vortex (SV) domain structure can have even higher stability that SD grains. In larger grains (10 μm in magnetite) the multidomain (MD) state dominates, so that large uniform magnetic domains are separated by narrow domain walls. In this paper we use a parallelized micromagnetic finite element model to provide resolutions of many millions of elements allowing us, for the first time, to examine the evolution of magnetic structure from a uniform state, through the SV state up to the development of the domain walls indicative of MD states. For a cuboctahedral grain of magnetite, we identify clear domain walls in grains as small as ∼3 μm with domain wall widths equal to that expected in large MD grains; we therefore put the SV to MD transition at ∼3 μm for magnetite and expect well‐defined, and stable, SV structures to be present until at least ∼1 μm when reducing the grain size. Reducing the size further shows critical dependence on the history of domain structures, particularly with SV states that transition through a so‐called “unstable zone” leading to the recently observed hard‐aligned SV states that proceed to unwind to SD yet remain hard aligned.

 
more » « less
Award ID(s):
1827263 1547263
NSF-PAR ID:
10456563
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
20
Issue:
6
ISSN:
1525-2027
Page Range / eLocation ID:
p. 2907-2918
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Continuum polarization over the UV-to-microwave range is due to dichroic extinction (or emission) by asymmetric, aligned dust grains. Scattering can also be an important source of polarization, especially at short wavelengths. Because of both grain alignment and scattering physics, the wavelength dependence of the polarization, generally, traces the size of the aligned grains. Similarly because of the differing wavelength dependencies of dichroic extinction and scattering polarization, the two can generally be reliably separated. Ultraviolet (UV) polarimetry therefore provides a unique probe of the smallest dust grains (diameter$< 0.09~\upmu \text{m}$<0.09μm), their mineralogy and interaction with the environment. However, the current observational status of interstellar UV polarization is very poor with less than 30 lines of sight probed. With the modern, quantitative and well-tested, theory of interstellar grain alignment now available, we have the opportunity to advance the understanding of the interstellar medium (ISM) by executing a systematic study of the UV polarization in the ISM of the Milky Way and near-by galaxies. The Polstar mission will provide the sensitivity and observing time needed to carry out such a program (probing hundreds of stars in the Milky Way and dozens of stars in the LMC/SMC), addressing questions of dust composition as a function of size and location, radiation- and magnetic-field characteristics as well as unveiling the carrier of the 2175 Å extinction feature. In addition, using high-resolution UV line spectroscopy Polstar will search for and probe the alignment of, and polarization from, aligned atoms and ions - so called “Ground State Alignment”, a potentially powerful new probe of magnetic fields in the diffuse ISM.

     
    more » « less
  2. SUMMARY Anisotropy of remanent magnetization and magnetic susceptibility are highly sensitive and important indicators of geological processes which are largely controlled by mineralogical parameters of the ferrimagnetic fraction in rocks. To provide new physical insight into the complex interaction between magnetization structure, shape, and crystallographic relations, we here analyse ‘slice-and-view’ focused-ion-beam (FIB) nano-tomography data with micromagnetic modelling and single crystal hysteresis measurements. The data sets consist of 68 magnetite inclusions in orthopyroxene (Mg60) and 234 magnetite inclusions in plagioclase (An63) were obtained on mineral separates from the Rustenburg Layered Suite of the Bushveld Intrusive Complex, South Africa. Electron backscatter diffraction was used to determine the orientation of the magnetite inclusions relative to the crystallographic directions of their silicate hosts. Hysteresis loops were calculated using the finite-element micromagnetics code MERRILL for each particle in 20 equidistributed field directions and compared with corresponding hysteresis loops measured using a vibrating sample magnetometer (VSM) on silicate mineral separates from the same samples. In plagioclase the ratio of remanent magnetization to saturation magnetization (Mrs/Ms) for both model and measurement agree within 1.0 per cent, whereas the coercivity (Hc) of the average modelled curve is 20 mT lower than the measured value of 60 mT indicating the presence of additional sources of high coercivity in the bulk sample. The VSM hysteresis measurements of the orthopyroxene were dominated by multidomain (MD) magnetite, whereas the FIB location was chosen to avoid MD particles and thus contains only particles with diameters <500 nm that are considered to be the most important carriers of palaeomagnetic remanence. To correct for this sampling bias, measured MD hysteresis loops from synthetic and natural magnetites were combined with the average hysteresis loop from the MERRILL models of the FIB region. The result shows that while the modelled small-particle fraction only explains 6 per cent of the best fit to the measured VSM hysteresis loop, it contributes 28 per cent of the remanent magnetization. The modelled direction of maximal Mrs/Ms in plagioclase is subparallel to [001]plag, whereas Hc does not show a strong orientation dependence. The easy axis of magnetic remanence is in the direction of the magnetite population normal to (150)plag and the maximum calculated susceptibility (χ*) is parallel to [010]plag. For orthopyroxene, the maximum Mrs/Ms, maximum χ* and the easy axis of remanence is strongly correlated to the elongation axes of magnetite in the [001]opx direction. The maximum Hc is oriented along [100]opx and parallel to the minimum χ*, which reflects larger vortex nucleation fields when the applied field direction approaches the short axis. The maximum Hc is therefore orthogonal to the maximum Mrs/Ms, controlled by axis-aligned metastable single-domain states at zero field. The results emphasize that the nature of anisotropy in natural magnetite does not just depend on the particle orientations, but on the presence of different stable and metastable domain states, and the mechanism of magnetic switching between them. Magnetic modelling of natural magnetic particles is therefore a vital method to extract and process anisotropic hysteresis parameters directly from the primary remanence carriers. 
    more » « less
  3. Abstract

    Herein, the experimental observation of micrometer‐scale magnetic skyrmions at room temperature in several Pt/Co‐based thin film heterostructures designed to possess low exchange stiffness, perpendicular magnetic anisotropy, and a modest interfacial Dzyaloshinskii–Moriya interaction (iDMI) is reported. It is found both experimentally and by micromagnetic and analytic modeling that a low exchange stiffness and modest iDMI eliminates the energetic penalty associated with forming domain walls in thin films. When the domain wall energy density approaches negative values, the remanent morphology transitions from a uniform state to labyrinthine stripes. A low exchange stiffness, indicated by a sub‐400 K Curie temperature, is achieved in Pt/Co, Pt/Co/Ni, and Pt/Co/Ni/Re structures by reducing the Co thickness to the ultrathin limit (<0.3 nm). Similar effects occur in thicker Pt/Co/NixCu1−xstructures when the Ni layer is alloyed with Cu. At this transition in domain morphology, skyrmion phases are stabilized by small (<1 mT), perpendicular magnetic fields, and skyrmion motion in response to spin–orbit torque is observed. While the temperature and thickness‐induced morphological phase transitions observed are similar to the well‐studied spin reorientation transition that occurs in the ultrathin limit, the underlying energy balances are substantially modified by the presence of an iDMI.

     
    more » « less
  4. Abstract

    Broken symmetries in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. The Fermionic spectrum of confined (quasi-2D)3He-A consists of branches of chiral edge states. The negative energy states are related to the ground-state angular momentum,Lz=(N/2), forN/2Cooper pairs. The power law suppression of the angular momentum,Lz(T)(N/2)[123(πT/Δ)2]for0TTc, in the fully gapped 2D chiral A-phase reflects the thermal excitation of the chiral edge Fermions. We discuss the effects of wave function overlap, and hybridization between edge states confined near opposing edge boundaries on the edge currents, ground-state angular momentum and ground-state order parameter of superfluid3He thin films. Under strong lateral confinement, the chiral A phase undergoes a sequence of phase transitions, first to a pair density wave (PDW) phase with broken translational symmetry atDc216ξ0. The PDW phase is described by a periodic array of chiral domains with alternating chirality, separated by domain walls. The period of PDW phase diverges as the confinement lengthDDc2. The PDW phase breaks time-reversal symmetry, translation invariance, but is invariant under the combination of time-reversal and translation by a one-half period of the PDW. The mass current distribution of the PDW phase reflects this combined symmetry, and originates from the spectra of edge Fermions and the chiral branches bound to the domain walls. Under sufficiently strong confinement a second-order transition occurs to the non-chiral ‘polar phase’ atDc19ξ0, in which a single p-wave orbital state of Cooper pairs is aligned along the channel.

     
    more » « less
  5. SUMMARY

    Quaternary lavas of the Stardalur Caldera, 20 km northeast of Reykjavik, Iceland, create a 27 300 nT magnetic anomaly visible in both ground and aeromagnetic surveys. Here, we provide a comprehensive mineralogical and rock magnetic data set to analyse NRM intensities and Koenigsberger ratios of 57 drill-core samples from the critical zone (CZ) of the anomaly high at depths between 41 and 131 m. This extends previous studies and verifies that the anomaly is due to an unusually high intensity of remanent magnetization carried by magnetite. The NRM of the CZ samples was acquired during the Olduvai subchron in a field of at most today’s strength. NRM intensities range from 20 to 128 A m–1 with a median of 55 A m–1, and an average of 61 A m–1, respectively, approximately 13–15 times higher than in typical Icelandic basalts (AIB) with an NRM intensity of 4 A m–1. Our new data set shows that the magnetite concentration throughout the CZ basalts is at most twofold higher than in AIB lavas. New data on domain state and TRM efficiency prove that these properties account for an additional factor of at most 2.3. Because magnetite is the most abundant remanence carrier in rocks on Earth, and its remanence acquisition is considered to be extremely well understood, we assert that the remaining discrepancy is a critical enigma in rock magnetism. Results from scanning electron microscopy show that a significant fraction of all CZ magnetite particles have dendritic shapes with grain sizes <1 μm, indicating rapid crystallization. Most large magnetite grains are heavily subdivided by very fine oxidation-exsolution lamellae of ilmenite, and subordinate amount of exsolved spinel as needles, blebs and blades. These common microstructures found throughout the CZ subdivide the initially homogeneous mineral into separate cubicles, here denoted as compartments. The magnetite compartments then have sizes below 1 μm. Hysteresis data, Preisach maps and FORC data consistently confirm that the coercivity distribution is dominated by values above 10 mT, such that multidomain behaviour is of little relevance in the CZ. Between 5 and 20 per cent of the IRM is carried by coercivities above 100 mT, which for magnetite indicates unusually high anisotropy effects in the individual particles. Based on the quantitative analysis of all magnetic contributions to the NRM, we can demonstrate that the average efficiency of NRM acquisition in the CZ Stardalur basalts must be at least a factor 3 higher than in typical basalts. We speculate that this is related to the observed focused compartment size distribution <1 μm, and indicates thermochemical remanence acquisition below the Curie temperature of magnetite. Yet, a detailed physical mechanism for the extreme overefficiency of NRM acquisition remains enigmatic.

     
    more » « less