skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Equation of State of a Magnetized Dense Neutron System
We discuss how a magnetic field can affect the equation of state of a many-particle neutron system. We show that, due to the anisotropy in the pressures, the pressure transverse to the magnetic field direction increases with the magnetic field, while the one along the field direction decreases. We also show that in this medium there exists a significant negative field-dependent contribution associated with the vacuum pressure. This negative pressure demands a neutron density sufficiently high (corresponding to a baryonic chemical potential of μ = 2.25 GeV) to produce the necessary positive matter pressure that can compensate for the gravitational pull. The decrease of the parallel pressure with the field limits the maximum magnetic field to a value of the order of 10 18 G, where the pressure decays to zero. We show that the combination of all these effects produces an insignificant variation of the system equation of state. We also found that this neutron system exhibits paramagnetic behavior expressed by the Curie’s law in the high-temperature regime. The reported results may be of interest for the astrophysics of compact objects such as magnetars, which are endowed with substantial magnetic fields.  more » « less
Award ID(s):
1714183
PAR ID:
10096904
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Universe
Volume:
5
Issue:
5
ISSN:
2218-1997
Page Range / eLocation ID:
104
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Binary neutron star mergers can produce extreme magnetic fields, some of which can lead to strong magnetar-like remnants. While strong magnetic fields have been shown to affect the dynamics of outflows and angular momentum transport in the remnant, they can also crucially alter the properties of nuclear matter probed in the merger. In this work, we provide a first assessment of the latter, determining the strength of the pressure anisotropy caused by Landau-level quantization and the anomalous magnetic moment. To this end, we perform the first numerical relativity simulation with a magnetic polarization tensor and a magnetic-field-dependent equation of state using a new algorithm we present here, which also incorporates a mean-field dynamo model to control the magnetic field strength present in the merger remnant. Our results show that—in the most optimistic case—corrections to the anisotropy can be in excess of 10% and are potentially largest in the outer layers of the remnant. This work paves the way for a systematic investigation of these effects. 
    more » « less
  2. Abstract We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars (NSs) and strange quark stars (SQSs), made of strongly magnetized matter. The NSs are described by the SLy equation of state (EOS) and the SQSs by an EOS based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered: a radial orientation where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic-field strength and increase in size since the repulsive, effective anisotropic force increases in this case. In the case of a radially oriented magnetic field, however, the masses and radii of the stars decrease with increasing magnetic-field strength because of the decreasing effective anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models. 
    more » « less
  3. Neutron stars are the endpoint of the life of intermediate mass stars and posses in their cores matter in the most extreme conditions in the universe. Besides their extremes of temperature (found in proto-neutron stars) and densities, typical neutron star' magnetic fields can easily reach trillions of times higher the one of the Sun. Among these stars, about 10% are denominated magnetars which possess even stronger surface magnetic fields of up to 10^15-10^16 G. In this conference proceeding, we present a short review of the history and current literature regarding the modeling of magnetic neutron stars. Our goal is to present the results regarding the introduction of magnetic fields in the equation of state of matter using Relativistic Mean Field models (RMF models) and in the solution of Einstein's equations coupled to the Maxwell's equations in order to generate a consistent calculation of magnetic stars structure. We discuss how equation of state modeling affects mass, radius, deformation, composition and magnetic field distribution in stars and also what are the open questions in this field of research. 
    more » « less
  4. Abstract Spin-orbit coupling is an important ingredient to regulate the many-body physics, especially for many spin liquid candidate materials such as rare-earth magnets and Kitaev materials. The rare-earth chalcogenides Equation missing<#comment/>(Ch = O, S, Se) is a congenital frustrating system to exhibit the intrinsic landmark of spin liquid by eliminating both the site disorders between Equation missing<#comment/>and Equation missing<#comment/>ions with the big ionic size difference and the Dzyaloshinskii-Moriya interaction with the perfect triangular lattice of the Equation missing<#comment/>ions. The temperature versus magnetic-field phase diagram is established by the magnetization, specific heat, and neutron-scattering measurements. Notably, the neutron diffraction spectra and the magnetization curve might provide microscopic evidence for a series of spin configuration for in-plane fields, which include the disordered spin liquid state, 120° antiferromagnet, and one-half magnetization state. Furthermore, the ground state is suggested to be a gapless spin liquid from inelastic neutron scattering, and the magnetic field adjusts the spin orbit coupling. Therefore, the strong spin-orbit coupling in the frustrated quantum magnet substantially enriches low-energy spin physics. This rare-earth family could offer a good platform for exploring the quantum spin liquid ground state and quantum magnetic transitions. 
    more » « less
  5. Abstract We present the observations of field‐aligned currents and the equatorial electrojet during the 23 March 2023 magnetic storm, focusing on the effect of the drastic decrease of the solar wind dynamic pressure occurred during the main phase. Our observations show that the negative pressure pulse had significant impact to the magnetosphere‐ionosphere system. It weakened large‐scale field‐aligned currents and paused the progression of the storm main phase for ∼3 hr. Due to the sudden decrease of the plasma convection after the negative pressure pulse, the low‐latitude ionosphere was over‐shielded and experienced a brief period of westward penetration electric field, which reversed the direction of the equatorial electrojet. The counter electrojet was observed both in space and on the ground. A transient, localized enhancement of downward field‐aligned current was observed near dawn, consistent with the mechanism for transmitting MHD disturbances from magnetosphere to the ionosphere after the negative pressure pulse. 
    more » « less